„Fizika1 Kifejtendő gyakorlófeladatok megoldásokkal” változatai közötti eltérés

Nincs szerkesztési összefoglaló
/* Tekintsünk egy rendszert, amelyet környezetétől – a konzervatív erőket kivéve – teljesen elszigetelünk. A munkatétel (1p) és a potenciális-energia függvény definíciója (1p) alapján értelmezze a rendszer mechanikai energiájának…
33. sor: 33. sor:


== Tekintsünk egy rendszert, amelyet környezetétől – a konzervatív erőket kivéve – teljesen elszigetelünk. A munkatétel (1p) és a potenciális-energia függvény definíciója (1p) alapján értelmezze a rendszer mechanikai energiájának megmaradását (1p)! ==
== Tekintsünk egy rendszert, amelyet környezetétől – a konzervatív erőket kivéve – teljesen elszigetelünk. A munkatétel (1p) és a potenciális-energia függvény definíciója (1p) alapján értelmezze a rendszer mechanikai energiájának megmaradását (1p)! ==
* Mechanikai energiamegmaradás: <math>\frac1 2 m v^2 + U_p = const</math>, ahol <math>U_p</math> a potenciális energia
* Potenciálos vagy konzervatív [https://hu.wikipedia.org/wiki/Potenci%C3%A1lis_energia erőtérnek] olyan erőteret nevezünk, ahol egy pontból egy másik pontba elmozdítva egy testet, mindig ugyanakkora munkát kell végeznünk, bármilyen útvonalat is használunk. Ilyen erőterek például a gravitációs erőtér, elektrosztatikus erőtér, rugalmas alakváltozás stb.
* .... erőtér: <math>U_p=mgh</math>
* rugalmas erőtér: <math>U_p=\frac1 2 k x^2</math>
* grevitációs erőtér: <math>U_p(r)=-\gamma |frac {Mm}r</math>


== Írja fel a fonálinga (matematikai inga) mozgásegyenletét és egyszerűsítse kis szögű kitérések esetén! (1,5p) Oldja meg a mozgásegyenletet, ha az ingát függőleges helyzetéből v0 kezdősebességgel indítjuk el! (1,5p) ==
== Írja fel a fonálinga (matematikai inga) mozgásegyenletét és egyszerűsítse kis szögű kitérések esetén! (1,5p) Oldja meg a mozgásegyenletet, ha az ingát függőleges helyzetéből v0 kezdősebességgel indítjuk el! (1,5p) ==