„Számítógépes látórendszerek - Ellenőrző kérdések: Frekvenciatartomány” változatai közötti eltérés
10. sor: | 10. sor: | ||
===DCT vs DFT:=== | ===DCT vs DFT:=== | ||
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén. További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is. | Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén. További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is. | ||
===FCT:=== | ===FCT: Fast Cosine Transform=== | ||
# Szimmetrikus függvény | |||
# DFT(2N) | |||
# Pozitív tartomány | |||
===Adattömörítés=== | ===Adattömörítés=== | ||
Jóval kisebb intenzitású nagyfrekvenciás komponensek, mivel nincs hirtelen átmenet a kép széleinél, mint DFT esetén. (kevesebb információt vesztünk el a nagyfrekvenciás komponensek eldobásával) | Jóval kisebb intenzitású nagyfrekvenciás komponensek, mivel nincs hirtelen átmenet a kép széleinél, mint DFT esetén. (kevesebb információt vesztünk el a nagyfrekvenciás komponensek eldobásával) |
A lap 2015. április 15., 16:48-kori változata
Mutassa be, hogy mit jelent egy kép frekvenciatere, hogyan kell értelmezni? (Képletekre nincs szükség).
Hogyan hat egy objektum pozíciója és orientációja a frekvenciatartománybeli képre?
A kép frekvenciatere megadja azon komplex exponenciális komponensek együtthatóját, amelyekből a kép előállítható. Két dimenziós kép esetén a frekvenciatartomány is két dimenziós lesz. Mivel egy kép diszkrét pontokból áll, ezért a frekvenciatartomány periodikus lesz, azonban ennek csak az első periódusát ábrázoljuk, mivel a többi nem tartalmaz plusz információt. Továbbá mivel a pixelek a képen nyilvánvalóan valós értékűek, ezért a frekvenciatartományban komplex konjugált párokat kell kapnunk. Egy kép frekvenciaterében az egyes komponensekhez hasonlóan az egy dimenziós esethez két jellemző tartozik: a fázis és az amplitúdó. Lényeges különbség azonban, hogy egy komponenst már két koordináta azonosítja (k és l). Ezek a koordináták határozzák meg a képtartományban a szinuszos hullámok orientációját (ha az egyik nulla, akkor tengelyirányú), illetve periódusát. Eltolás a képtartományban nincs hatással az amplitúdókarakterisztikára a frekvenciatartományban (csak a fázisra). A forgatás már hatással van mind a két jellemzőre, de az amplitúdó karakterisztika esetén egy képtartománybeli forgatás az amplitúdó karakterisztikában is egy forgatásként jelenik meg.
Mit jelent az FFT? Hogyan működik az algoritmus?
Mi a DCT, miben különbözik a DFT-től?
Hogyan működik a FCT?
Miért lehet jól alkalmazni ezt az algoritmust tömörítés során és hogyan?
FFT: Fast Fourier Transformation
Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban.
DCT vs DFT:
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén. További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is.
FCT: Fast Cosine Transform
- Szimmetrikus függvény
- DFT(2N)
- Pozitív tartomány
Adattömörítés
Jóval kisebb intenzitású nagyfrekvenciás komponensek, mivel nincs hirtelen átmenet a kép széleinél, mint DFT esetén. (kevesebb információt vesztünk el a nagyfrekvenciás komponensek eldobásával)