„Számítógépes látórendszerek - Ellenőrző kérdések: Mérések” változatai közötti eltérés
/* Mit jelent a lánckód? Mire használható? Mi a különbség a 4-szomszádos és 8-szomszédos lánckód között? Mik az előnyei és a hátrányai az így ábrázolt objektumoknak? Hogyan tudunk segítségével kerület- és hossz-számítá… |
|||
| 42. sor: | 42. sor: | ||
*8-szomszédos lánckód maximális hiba: 7.9% (~18-27°-os átlós egyenes) | *8-szomszédos lánckód maximális hiba: 7.9% (~18-27°-os átlós egyenes) | ||
=== Kerület = kódhossz === | |||
Hossz számításnál kerül elő az a probléma, hogy négyzetes pixelek esetén egy átlós lépés valóságos hossza sqrt(2) egység. 4-szomszédos lánckód 2 egység hosszúnak, míg a 8-szomszédos esetben 1 egység hosszúnak veszi alapból. Ha szükséges akkor ezt kompenzálni kell. | Hossz számításnál kerül elő az a probléma, hogy négyzetes pixelek esetén egy átlós lépés valóságos hossza sqrt(2) egység. 4-szomszédos lánckód 2 egység hosszúnak, míg a 8-szomszédos esetben 1 egység hosszúnak veszi alapból. Ha szükséges akkor ezt kompenzálni kell. | ||
== Ismertessen szubpixeles eljárásokat. Hogyan tudunk pozíciót, kerületet, ill. területet mérni segítségükkel? == | == Ismertessen szubpixeles eljárásokat. Hogyan tudunk pozíciót, kerületet, ill. területet mérni segítségükkel? == | ||
Interpoláció alapú eljárás, mely segítségével pixel alatti pontossággal illeszthetünk görbét egy objektumra. | Interpoláció alapú eljárás, mely segítségével pixel alatti pontossággal illeszthetünk görbét egy objektumra. | ||