„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
David14 (vitalap | szerkesztései)
230. sor: 230. sor:
===26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása ===
===26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása ===


Egy levegőben álló, zérus össztöltésű fém gömbhéj belső sugara <math>r</math>, külső sugara <math>1.5 \; r</math>. A gömbhéj középpontjában <math>Q</math> ponttöltés van. Adja meg a gömbhéj külső és belső felszínén felhalmozódó felületi töltéssűrűségek hányadosát!
Egy levegőben álló, zérus össztöltésű fém gömbhéj belső sugara <math>r</math>, külső sugara <math>1.5 \; r</math>. A gömbhéj középpontjában <math>Q</math> ponttöltés van.
 
Adja meg a gömbhéj külső és belső felszínén felhalmozódó felületi töltéssűrűségek hányadosát!


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
[[File:Terek_szóbeli_feladatok_gömbhlj_erővonalkép.JPG|400px]]
Mivel a fém gömbhéj földeletlen és össztöltése zérus, így a töltésmegosztás következtében a fenti töltéselrendeződés alakul ki.
Azaz a fémgömbhéj belső felszíne <math>-Q</math>, a külső felszíne pedig <math>+Q</math> töltésű lesz, egyenletes töltéseloszlással.
A külső és belső felszínen felhalmozódó felületi töltéssűrűségek hányadosa tehát:
<math>{\sigma_k \over \sigma_b} =
{ {+Q \over 4 \pi \left(1.5r \right)^2 } \over  {-Q \over 4 \pi r^2 } } =
- { r^2 \over \left(1.5r \right)^2 } =
- { 1 \over 1.5^2 } =
- { 4 \over 9 } \approx -0.4444</math>


}}
}}


== Stacionárius áramlási tér ==
== Stacionárius áramlási tér ==