„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés
| 263. sor: | 263. sor: | ||
A gyakorlatban adott frekvencián <math>\frac{U_\mathrm{ki}}{U_\mathrm{be}}</math> méréssel meghatározható, majd a képlettel <math>L_\mathrm{sz}</math> számítható. | A gyakorlatban adott frekvencián <math>\frac{U_\mathrm{ki}}{U_\mathrm{be}}</math> méréssel meghatározható, majd a képlettel <math>L_\mathrm{sz}</math> számítható. | ||
==12. | ==12. Elektromágneses tereknél mit nevezünk közeltérnek illetve távoltérnek?== | ||
Elektromágneses tereknél mit nevezünk közeltérnek illetve távoltérnek? | |||
Ábra: | Ábra: | ||
| 289. sor: | 283. sor: | ||
<math>\vec{H}</math> ismeretében konkrét esetben <math>\vec{E}</math> rotációképzéssel számítható, de <math>\vec{E}</math> -re is megadható az előbbihez hasonló összefüggés, de az jóval bonyolultabb. Ennek is van egy távoli, az áram deriváltjával és <math>\frac{1}{R}</math>-rel arányos, egy közeli, az árammal és <math>\frac{1}{R^2}</math>-tel arányos összetevője, de van még egy harmadik, még közelebbi, <math>\frac{1}{R^3}</math> szerint eltűnő és az áram idő szerinti integráljával (a töltéssel) arányos összetevője is. | <math>\vec{H}</math> ismeretében konkrét esetben <math>\vec{E}</math> rotációképzéssel számítható, de <math>\vec{E}</math> -re is megadható az előbbihez hasonló összefüggés, de az jóval bonyolultabb. Ennek is van egy távoli, az áram deriváltjával és <math>\frac{1}{R}</math>-rel arányos, egy közeli, az árammal és <math>\frac{1}{R^2}</math>-tel arányos összetevője, de van még egy harmadik, még közelebbi, <math>\frac{1}{R^3}</math> szerint eltűnő és az áram idő szerinti integráljával (a töltéssel) arányos összetevője is. | ||
[[Category:Villanyalap]] | [[Category:Villanyalap]] | ||