„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés

A VIK Wikiből
David14 (vitalap | szerkesztései)
David14 (vitalap | szerkesztései)
177. sor: 177. sor:
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=  
|szöveg=  
Ábra:
[[Fájl:Labor2 kép7.jpg]]


<math> R = \varrho \cdot \frac{l}{a \cdot h} </math>
<math> R = \varrho \cdot \frac{l}{a \cdot h} </math>


Ahol ''<math>\varrho</math>'' a fajlagos ellenállás, '''l''' a vezetékszakasz hossza, '''a''' a szélessége, '''h''' pedig a vastagsága.
Ahol <math>\varrho</math> a fajlagos ellenállás, <math>l</math> a vezetékszakasz hossza, <math>a</math> a szélessége, <math>h</math> pedig a vastagsága.


<math> \Delta R = \frac{\partial R}{\partial \varrho} \cdot \Delta \varrho + \frac{\partial R}{\partial l} \cdot \Delta l + \frac{\partial R}{\partial a} \cdot \Delta a + \frac{\partial R}{\partial h} \cdot \Delta h </math>


<math> \Delta R = \frac{l}{a \cdot h} \cdot \Delta \varrho + \frac{\varrho}{a \cdot h} \cdot \Delta l - \varrho \cdot \frac{l}{a^2 \cdot h} \cdot \Delta a - \varrho \cdot \frac{l}{a \cdot h^2} \cdot \Delta h </math>
A hibakomponensek ''worst case'' összegzése esetén:


<math> \frac{\Delta R}{R} = \frac{\Delta \varrho}{\varrho} + \frac{\Delta l}{l} - \frac{\Delta a}{a} - \frac{\Delta h}{h} </math>
<math>\Delta R_{w.c.} =
\left| \frac{\partial R}{\partial \varrho} \cdot \Delta \varrho \right| +  
\left| \frac{\partial R}{\partial l} \cdot \Delta l \right| +
\left| \frac{\partial R}{\partial a} \cdot \Delta a \right| +
\left| \frac{\partial R}{\partial h} \cdot \Delta h \right| </math>


<math> u_R = \sqrt{\left(\frac{\Delta \varrho}{\varrho}\right)^2 + \left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta h}{h}\right)^2} </math>


A standard bizonytalanság számításakor tehát az egyes hibakomponenseket valószínűségi módon kell összegezni (ld. GUM).
<math> \Delta R_{w.c.} =
\left| \frac{l}{a \cdot h} \cdot \Delta \varrho \right|+
\left| \frac{\varrho}{a \cdot h} \cdot \Delta l \right|+
\left| - \varrho \cdot \frac{l}{a^2 \cdot h} \cdot \Delta a \right|+
\left| - \varrho \cdot \frac{l}{a \cdot h^2} \cdot \Delta h \right|</math>


[[Fájl:Labor2 kép7.jpg]]
 
<math> {\frac{\Delta R}{R}}_{w.c.} =
\left| \frac{\Delta \varrho}{\varrho} \right|+
\left| \frac{\Delta l}{l} \right|+
\left| \frac{\Delta a}{a} \right|+
\left| \frac{\Delta h}{h} \right|</math>
 
 
A hibakomponensek valószínűségi összegzésével, ami a tényleges bizonytalanságot adja:
 
<math> {\frac{\Delta R}{R}}_{val} = \sqrt{\left(\frac{\Delta \varrho}{\varrho}\right)^2 + \left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta h}{h}\right)^2} </math>


}}
}}

A lap 2014. február 3., 04:27-kori változata


1. Feladat

Egy végtelen hosszú, szinuszos áramot szállító vezetőtől távolságban lévő pontban határozza meg a térerősséget és a indukciót!

Megoldás

Ábra:

Ampere-féle gerjesztési törvényt felírva egy olyan zárt L görbére, amely által kifeszített, a vezetékre merőleges A körlapot a vezeték pont a közepén döfi át:


Szimmetria okokból, a mágneses térerősségvektorok a görbe mentén mindenhol érintő irányúak, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Az elektromos eltolásvektor időbeli változása zérus, az áramsűrűségvektor pedig merőleges az A körlapra, a felületintegrál eredménye az A körlapon átfolyó áramerősség:



2. Feladat

Egy végtelen hosszú, szinuszos áramot szállító vezető síkjában egy téglalap alakú, méretű vezetőkeret helyezkedik el. A vezetőkeret méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!

Megoldás

Ábra:

A Faraday-féle indukciós törvény felhasználásával:




Az integrálást tehát csak a oldal szerint végezzük el, mivel oldal mentén a mágneses térerősség állandó. A keret távolsága a vezetőtől .

3. Feladat

Egy téglalap alakú, méretű, szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az és illetve és méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?

Megoldás

Ábra:

Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása:





A belső vezetőkeretben indukált feszültség a Faraday-féle indukciós térvénnyel egyszerűen számítható:



A kölcsönös induktivitás definíció szerint számítható:


4. Feladat

Határozza meg két végtelen hosszú, párhuzamosan futó hengeres vezető között a hosszegységre eső villamos kapacitást!

Megoldás

Ábra:

Vezessük be az alábbi jelöléseket:

  • és
  • Az sugarú vezetőhenger egységnyi hosszúságú szakaszára eső töltés
  • Az sugarú vezetőhenger egységnyi hosszúságú szakaszára eső töltés


Egy töltött sugarú hengeres vezető által keltett elektromos térerősségvektor a Gauss-tétellel meghatározható, ha azt egy hosszúságú sugarú felületű koaxiális hengerre írjuk fel.


Szimmetria okok miatt az elektromos térerősségvektor mindig sugárirányú lesz, így a henger lapjain az integrál értéke zérus, míg hengerpaláston egy egyszerű szorzássá egyszerűsödik.


Az sugarú henger töltése potenciálkülönbséget hoz létre a két henger között.


Az sugarú henger töltése potenciálkülönbséget hoz létre a két henger között. Hasonló számítással adódik, hogy:


MIvel a potenciáltér lineáris, így a két henger közötti potenciálkülönbség:


A két hengeres vezető közötti hosszegységre eső kapacitás definíció szerint:


Ha mindkét henger azonos sugarú, azaz , abban az esetben:

5. Feladat

Határozza meg nyomtatott huzalozás esetén egy vezetőszakasz ellenállását és annak bizonytalanságát!

Megoldás

Ábra:


Ahol a fajlagos ellenállás, a vezetékszakasz hossza, a szélessége, pedig a vastagsága.


A hibakomponensek worst case összegzése esetén:




A hibakomponensek valószínűségi összegzésével, ami a tényleges bizonytalanságot adja:

6. Feladat

Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!

Megoldás

A CD11.4599.151 típusú szűrővel rendelkező hálózati csatlakozó 2 pólusú kapcsolója lengő vezetéken helyezkedik el. Névleges áramerőssége 1A, általános célú berendezésekbe tervezték, 1 pólusú beépített olvadóbiztosítékkal.

A belső elemek értékei: L= 2 x 10 mH, Cx = 68 nF, Cy = 2,2 nF.

A Cx és Cy kondenzátorok szigorú szabványok alapján tervezett, öngyógyuló dielektrikumos fóliakondenzátorok.

A szűrő kettős feladatot lát el:

  • Az eszközre jutó feszültségcsúcsok ellen véd, amelyet elektromechanikus kapcsolók ill. relék okozhatnak
  • Ugyanez a szűrő a másik irányban is működik, az eszköz által keltett nagyfrekvenciás zavarokat csillapítja

A zavarok fajtái:
A) Feszültségingadozások
B) Harmónikus frekvenciájú inerferencia (100 Hz - 2 kHz)
C) Tranziensek által okozott interferencia (300 MHz-ig)
D) Szinusz szerű zavarok (akár 1 GHz-ig)

A szűrők alkotóelemei általában kondenzátorok és tekercsek, de gyakran alkalmaznak kondenzátor-kisütő ellenállásokat, túlfeszültség-védőket és igen nagyfrekvenciás fojtókat is. Emiatt a szűrő általában több egymást követő fokozatból áll.

A zavarok terjedhetnek közvetlen vezetéssel, kapacitív és induktív csatolással valamint sugárzással.

A zavarokat feloszthatjuk közös és differenciális módusú zavarokra. Földeletlen zavarforrásból származó zavaró jel a tápáramhoz hasonló módon, az egyik vezetéken befolyik az eszközbe, a mmásikon pedig ki. Ezt nevezzük differenciális módusú zavaró jelnek. A közös módusú zavar ezzel szemben (a mechanikai kialakítás következtében) mindkét tápvezetéken folyik be az eszközbe, és a földelésen folyik vissza a zavarforráshoz.

A közös módusú zavarok csillapítása --> ld. 7. kérdés

A differenciális módusú zavarokat a fojtó csak kismértékben csillapítja (ld. 7. kérdés), ezért van szükség a Cy kondenzátorok beépítésére, amelyek viszont a védővezetőbe folyó (ún. szivárgási) áramot okoznak. Ha a szivárgási áramra vonatkozó követelmény szigorú, ezeket el kell hagyni (pl. orvosi célú szűrők, melyekben a nagy Cx kapacitás kisütésére még egy ellenállást is beépítenek, hogy a táplálatlan szűrő kimenetén ne maradhasson fenn az üzemi feszültség).

7. Feladat

A szűrő közös vasmagon elhelyezett két tekercsének milyen a menetirányítása és miért?

Megoldás

A szűrő egy rádiófrekvenciás áramkompenzált fojtó (angolul RF Current Compensated Suppression Choke). A tekercsei úgy vannak irányítva, hogy a rajtuk folyó üzemi áramok által létrehozott fluxusok ellentétes irányúak legyenek, így kioltsák egymást. Ezek alapján, az áramirányok figyelembevételével mondhatjuk, hogy a tekercsek menetirányítása ellentétes.

Emiatt a differenciális módusú zavarok által keltett fluxusok (ideális esetben, azaz tökéletes csatolást feltéve) kioltják egymást. A közös módusú zavarok által keltett fluxusok viszont egyirányúak, így az ilyen zavarokat a fojtó szűrni tudja. A valóságban viszont a laza csatolás miatt fellépő szórási fluxus következtében a differenciális módusú zavarok kismértékű csillapítására is képes.

8. Feladat

Adja meg a szűrő aszimmetrikus zavarjelre érvényes modelljét!

Megoldás

Az aszimmetrikus zavarjelekre (közös módusú zavarokra) érvényes modell: (L1 = L2 = 10 mH, Cy = 2,2 nF)

9. Feladat

Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelre!

Megoldás

Fájl:Labor2 kép10.jpg

10. Feladat

Adja meg a szűrő szimmetrikus zavarjelre érvényes modelljét!

Megoldás

11. Feladat

Ideális elemeket feltételezve írja fel a szűrő csillapítását szimmetrikus zavarjelre!

Megoldás

Ideális eset: (szivárgási induktivitás) --> a csillapítás végtelen, a kimeneti feszültség bármely bemeneti feszültség esetén zérus. //-> Ez szerintem (Prímás) nem igaz, már csak a képletből kiindulva sem: ha Lsz = 0, akkor a csillapítás 1, így Ube = Uki, ami szépen látszik is a kapcsolási rajzon.

Valóságban: .

A gyakorlatban adott frekvencián adott, ebből , majd a képlettel számítható.

12. Feladat

Elektromágneses tereknél mit nevezünk közeltérnek illetve távoltérnek?

Megoldás

A vonalszerű vezetőben folyó áram által létrehozott mágneses térerősséget az általánosított Biot-Savart törvény adja meg:

Ebből kiolvasható, hogy az összefüggés első tagja az árammal arányos és a távolság négyzetével fordítottan arányos. A mágneses térerősségnek e tag által leírt komponensét közeltérnek vagy közeli térnek nevezzük.

Az összefüggés második tagja ellenben az áram idő szerinti deriváltjával arányos, és a távolsággal (és nem a négyzetével) fordítottan arányos. Ezt az összetevőt távoltérnek vagy távoli térnek nevezzük.

Tehát a vezetőhöz közel a közeli, messze a távoli tér a domináns. Az áram idő szerinti deriváltjával való arányosság szemléletesen úgy is leírható, hogy adott nagyságú áram esetén adott távolságra a vezetéktől a távoltér annál nagyobb a közeltérnél, minél nagyobb az I áram frekvenciája. Tehát előírt erőteret annál kisebb árammal tudunk létrehozni, minél nagyobb frekvenciát választunk.

H ismeretében konkrét esetben E rotációképzéssel számítható, de E -re is megadható az előbbihez hasonló összefüggés, de az jóval bonyolultabb. Ennek is van egy távoli, az áram deriváltjával és -rel arányos, egy közeli, az árammal és -tel arányos összetevője, de van még egy harmadik, még közelebbi, szerint eltűnő és az áram idő szerinti integráljával (a töltéssel) arányos összetevője is.

Fájl:Labor2 kép12.jpg