„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés
| 273. sor: | 273. sor: | ||
|szöveg=A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ. | |szöveg=A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ. | ||
<math>\oint_L \vec{H} d \vec{l} = \ | <math>\oint_L \vec{H} d \vec{l} = \int_A \vec{J} d\vec{s} = I</math> | ||
Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített | Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített A síkon csakis a vékony rézvezeték árama megy át. | ||
Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik: | Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik: | ||
<math>H 2 d \pi = I \longrightarrow H = \frac{I}{2 d \pi}=\frac{5}{2 | <math>H 2 d \pi = I \longrightarrow H = \frac{I}{2 d \pi}=\frac{5}{2 \cdot 0.03 \pi} \approx 26.53 \;{A \over m}</math> | ||
}} | }} | ||