„Matematika A1 - Vizsga: 2007.01.09” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
aNincs szerkesztési összefoglaló |
||
1. sor: | 1. sor: | ||
__NOTOC__ | |||
{{vissza|Matematika A1a - Analízis}} | {{vissza|Matematika A1a - Analízis}} | ||
===1. Írja fel az <math>x+2y+3z=4</math> és a <math>3x+4y+5z</math> síkokkal párhuzamos, a <math>P = (1,2,3)</math> ponton átmenő egyenes egyenletét! | ===1. Feladat=== | ||
Írja fel az <math>x+2y+3z=4</math> és a <math>3x+4y+5z</math> síkokkal párhuzamos, a <math>P = (1,2,3)</math> ponton átmenő egyenes egyenletét! | |||
{{Rejtett | {{Rejtett | ||
25. sor: | 27. sor: | ||
}} | }} | ||
===2. Az alábbi állítások közül melyik igaz, melyik nem? | ===2. Feladat=== | ||
Az alábbi állítások közül melyik igaz, melyik nem? | |||
a, Ha <math>(a_n)</math> konvergens <math>(a_n^n)</math> is konvergens | a, Ha <math>(a_n)</math> konvergens <math>(a_n^n)</math> is konvergens | ||
59. sor: | 63. sor: | ||
}} | }} | ||
===3. Adott a következő függvény: | ===3. Feladat=== | ||
Adott a következő függvény: | |||
<math> f(x)= \frac{2\sqrt{x}+3\sqrt[3]{x}}{6\sqrt[3]{x}-8\sqrt{x}} </math> | <math> f(x)= \frac{2\sqrt{x}+3\sqrt[3]{x}}{6\sqrt[3]{x}-8\sqrt{x}} </math> | ||
77. sor: | 83. sor: | ||
}} | }} | ||
===4. Legyen <math> n\geq1 </math> tetszőleges egész és <math>f(x)=x\arctan\frac{1}{x^n}</math> ha <math>x\neq0</math> és <math>f(0)=0</math>. Mely n-ekre deriválható az f függvény az origóban? Amikor létezik, folytonos-e a derivált itt? | ===4. Feladat=== | ||
Legyen <math> n\geq1 </math> tetszőleges egész és <math>f(x)=x\arctan\frac{1}{x^n}</math> ha <math>x\neq0</math> és <math>f(0)=0</math>. Mely n-ekre deriválható az f függvény az origóban? Amikor létezik, folytonos-e a derivált itt? | |||
{{Rejtett | {{Rejtett | ||
89. sor: | 97. sor: | ||
}} | }} | ||
===5. Adja meg a valós számegyenes véges sok olyan intervallumra való felosztását, melyek mindegyikén az <math> f(x)=x^5-80x </math> függvény kölcsönösen egyértelmű! | ===5. Feladat=== | ||
Adja meg a valós számegyenes véges sok olyan intervallumra való felosztását, melyek mindegyikén az <math> f(x)=x^5-80x </math> függvény kölcsönösen egyértelmű! | |||
{{Rejtett | {{Rejtett | ||
101. sor: | 111. sor: | ||
}} | }} | ||
===6. Határozza meg az alábbi határozott integrálok értékeit! | ===6. Feladat=== | ||
Határozza meg az alábbi határozott integrálok értékeit! | |||
<math>a,\;\int_{0}^\pi \sin^3\!{x}\;\mathrm{d}x=?</math> | <math>a,\;\int_{0}^\pi \sin^3\!{x}\;\mathrm{d}x=?</math> |