„Matematika A1 - Vizsga: 2007.01.09” változatai közötti eltérés

A VIK Wikiből
David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
1. sor: 1. sor:
{{noautonum}}
__NOTOC__


{{vissza|Matematika A1a - Analízis}}
{{vissza|Matematika A1a - Analízis}}




===1. Írja fel az <math>x+2y+3z=4</math> és a <math>3x+4y+5z</math> síkokkal párhuzamos, a <math>P = (1,2,3)</math> ponton átmenő egyenes egyenletét!===
===1. Feladat===
 
Írja fel az <math>x+2y+3z=4</math> és a <math>3x+4y+5z</math> síkokkal párhuzamos, a <math>P = (1,2,3)</math> ponton átmenő egyenes egyenletét!


{{Rejtett
{{Rejtett
25. sor: 27. sor:
}}
}}


===2. Az alábbi állítások közül melyik igaz, melyik nem?===
===2. Feladat===
 
Az alábbi állítások közül melyik igaz, melyik nem?


a, Ha <math>(a_n)</math> konvergens <math>(a_n^n)</math> is konvergens
a, Ha <math>(a_n)</math> konvergens <math>(a_n^n)</math> is konvergens
59. sor: 63. sor:
}}
}}


===3. Adott a következő függvény:===
===3. Feladat===
 
Adott a következő függvény:


<math> f(x)= \frac{2\sqrt{x}+3\sqrt[3]{x}}{6\sqrt[3]{x}-8\sqrt{x}} </math>
<math> f(x)= \frac{2\sqrt{x}+3\sqrt[3]{x}}{6\sqrt[3]{x}-8\sqrt{x}} </math>
77. sor: 83. sor:
}}
}}


===4. Legyen <math> n\geq1 </math> tetszőleges egész és <math>f(x)=x\arctan\frac{1}{x^n}</math> ha <math>x\neq0</math> és <math>f(0)=0</math>. Mely n-ekre deriválható az f függvény az origóban? Amikor létezik, folytonos-e a derivált itt?===
===4. Feladat===
 
Legyen <math> n\geq1 </math> tetszőleges egész és <math>f(x)=x\arctan\frac{1}{x^n}</math> ha <math>x\neq0</math> és <math>f(0)=0</math>. Mely n-ekre deriválható az f függvény az origóban? Amikor létezik, folytonos-e a derivált itt?


{{Rejtett
{{Rejtett
89. sor: 97. sor:
}}
}}


===5. Adja meg a valós számegyenes véges sok olyan intervallumra való felosztását, melyek mindegyikén az <math> f(x)=x^5-80x </math> függvény kölcsönösen egyértelmű!===
===5. Feladat===
 
Adja meg a valós számegyenes véges sok olyan intervallumra való felosztását, melyek mindegyikén az <math> f(x)=x^5-80x </math> függvény kölcsönösen egyértelmű!


{{Rejtett
{{Rejtett
101. sor: 111. sor:
}}
}}


===6. Határozza meg az alábbi határozott integrálok értékeit!===
===6. Feladat===
 
Határozza meg az alábbi határozott integrálok értékeit!


<math>a,\;\int_{0}^\pi \sin^3\!{x}\;\mathrm{d}x=?</math>
<math>a,\;\int_{0}^\pi \sin^3\!{x}\;\mathrm{d}x=?</math>

A lap 2014. február 2., 03:18-kori változata



1. Feladat

Írja fel az és a síkokkal párhuzamos, a ponton átmenő egyenes egyenletét!

Megoldás

Vegyük a két sík normálvektorát: és . Az egyenes merőleges kell, hogy legyen mindkét normálvektorra, ezt vektoriális szorzással kapjuk meg:

Az egyenes egyenlete: , egyenletrendszerben:

2. Feladat

Az alábbi állítások közül melyik igaz, melyik nem?

a, Ha konvergens is konvergens

b, Ha konvergens is konvergens

c, Ha akkor

d, Ha akkor


Megoldás

a, Nem igaz, pl. ha , akkor , divergál a végtelenbe. (, , de egyes esetekben -re is lehet.)

b, Nem igaz, pl.:

c, Nem igaz, pl.:

d, Nem igaz, lásb (b) feladat megoldása.

3. Feladat

Adott a következő függvény:

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

4. Feladat

Legyen tetszőleges egész és ha és . Mely n-ekre deriválható az f függvény az origóban? Amikor létezik, folytonos-e a derivált itt?

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

5. Feladat

Adja meg a valós számegyenes véges sok olyan intervallumra való felosztását, melyek mindegyikén az függvény kölcsönösen egyértelmű!

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

6. Feladat

Határozza meg az alábbi határozott integrálok értékeit!

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)