„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés
| 428. sor: | 428. sor: | ||
{{Rejtett | {{Rejtett | ||
|mutatott='''Megoldás''' | |mutatott='''Megoldás''' | ||
|szöveg= A Poynting-vektor kifejezése: <math>S=E \times H \Rightarrow S(r)=E(r)*H(r)*\vec{e_z}</math> (ahol <math>\vec{e_z}</math> a z irányú egységvektor). <br\>Innen a teljesítmény: <math>P=\int_{r_1}^{r_2} \int_0^{2\pi} \frac{U_0 I_0}{r^2} \mathrm{d}\varphi \mathrm{d}r=2\pi U_0 I_0(\frac{1}{r_1}-\frac{1}{r_2})=2\pi U_0 I_0 \frac{r_2-r_1}{r_1 r_2}</math> | |szöveg= A Poynting-vektor kifejezése: <math>S=E \times H \Rightarrow S(r)=E(r)*H(r)*\vec{e_z}</math> (ahol <math>\vec{e_z}</math> a z irányú egységvektor). <br\>Innen a teljesítmény: <math>P=\int_S \vec{S} d \vec{A} = \int_{r_1}^{r_2} \int_0^{2\pi} \frac{U_0 I_0}{r^2} \mathrm{d}\varphi \mathrm{d}r=2\pi U_0 I_0(\frac{1}{r_1}-\frac{1}{r_2})=2\pi U_0 I_0 \frac{r_2-r_1}{r_1 r_2}</math> | ||
}} | }} | ||
[[Kategória:Villanyalap]] | [[Kategória:Villanyalap]] | ||