„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

David14 (vitalap | szerkesztései)
David14 (vitalap | szerkesztései)
114. sor: 114. sor:


=== 81. Feladat: Távvezeték megadott feszültségű pontjának meghatározása ===
=== 81. Feladat: Távvezeték megadott feszültségű pontjának meghatározása ===
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: <math>R' = 20 {m \Omega \over m}</math> és <math>G' = 5 { \mu S \over m}</math>. Egy <math>U_0</math> egyenfeszültségű feszültség forrást kapcsolunk rá. Határozza meg azt a z távolságot, ahol a feszültség <math>U_0/2</math> lesz!
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: <math>R' = 20 {m \Omega \over m}</math> és <math>G' = 5 { \mu S \over m}</math>. Egy <math>U_0</math> egyenfeszültségű feszültségforrást kapcsolunk rá. Milyen lesz a kialakuló hullámforma a távvezetéken? Határozza meg azt a z távolságot, ahol a feszültség <math>U_0/2</math> lesz!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=Első körben meg kell határoznunk, hogy mennyi a távvezeték csillapítása (alfa), feltéve hogy omega=0, mivel egyenfeszültséggel gerjesztjük a távvezetéket:
|szöveg=A kialakuló hullámforma egy exponenciális burkológörbéjű, lecsengő szinuszos hullámzás lesz.
 
Meg kell határoznunk, hogy mennyi a távvezeték csillapítása (alfa), feltéve hogy omega=0, mivel egyenfeszültséggel gerjesztjük a távvezetéket:


<math>\alpha=Re\left\{ \gamma \right\}=Re\left\{ \sqrt{(R'+j\omega L')(G'+j\omega C')} \right\}=Re\left\{ \sqrt{R'*G'} \right\}=\sqrt{R'*G'}=\sqrt{0.02*5*10^{-6}}=3.16*10^{-4}{1\over m}</math>
<math>\alpha=Re\left\{ \gamma \right\}=Re\left\{ \sqrt{(R'+j\omega L')(G'+j\omega C')} \right\}=Re\left\{ \sqrt{R'*G'} \right\}=\sqrt{R'*G'}=\sqrt{0.02*5*10^{-6}}=3.16*10^{-4}{1\over m}</math>