„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés

A VIK Wikiből
Arklur (vitalap | szerkesztései)
Arklur (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
36. sor: 36. sor:
}}
}}


===5. Feladat===
===5. Feladat (Van megoldás)===
Egy algoritmus lépésszámáról tudjuk, hogy <math> T(n) = T\left(\left \lfloor  \frac{n}{4} \right \rfloor\right) + Ο(n^2)</math> és tudjuk azt is, hogy <math> T(1)=T(2)=T(3)=1</math>. Bizonyítsa be, hogy <math> T(n)=O(n^2)</math>.
Egy algoritmus lépésszámáról tudjuk, hogy <math> T(n) = T\left(\left \lfloor  \frac{n}{4} \right \rfloor\right) + Ο(n^2)</math> és tudjuk azt is, hogy <math> T(1)=T(2)=T(3)=1</math>. Bizonyítsa be, hogy <math> T(n)=O(n^2)</math>.
{{Rejtett
{{Rejtett

A lap 2013. június 7., 20:19-kori változata

2013.06.06. vizsga megoldásai

1. Feladat

TODO

Megoldás
TODO

2. Feladat

TODO

Megoldás
TODO

3. Feladat

TODO

Megoldás
TODO

4. Feladat

TODO

Megoldás
TODO

5. Feladat (Van megoldás)

Egy algoritmus lépésszámáról tudjuk, hogy Értelmezés sikertelen (formai hiba): {\displaystyle T(n) = T\left(\left \lfloor \frac{n}{4} \right \rfloor\right) + Ο(n^2)} és tudjuk azt is, hogy . Bizonyítsa be, hogy .

Megoldás


Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van egy magic képletünk:
ahol , vagyis

Vagyis

6. Feladat

TODO

Megoldás
TODO

7. Feladat

TODO

Megoldás
TODO

8. Feladat

TODO

Megoldás
TODO