„Elektronika” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
aNincs szerkesztési összefoglaló |
||
7. sor: | 7. sor: | ||
|felev=5 | |felev=5 | ||
|kereszt=nincs | |kereszt=nincs | ||
| | |tanszék=EET | ||
|kiszh=2(+1)db | |kiszh=2(+1)db | ||
|nagyzh=2 db | |nagyzh=2 db |
A lap 2013. június 3., 17:45-kori változata
Követelmények
Előtanulmányi rend
A tárgy legkorábban a Fizika II. tárggyal együtt vehető fel.
Szorgalmi időszakban
A félévközi jegy kialakítása a két nagy zárthelyin és a két legjobb kis zárthelyin szerzett pontok összege alapján történik, a jegyszerzéshez az összes megszerezhető pont 40%-a kell, tehát nem kötelező minden ZH-t külön külön elégségesre megírni.
Továbbá kötelező a 70%-os részvétel a gyakorlatokon, azaz 4 elfogadott gyakorlat.
Segédanyagok
Moodle-ön levő diákból érdemes felkészülni, mert könnyen érthető és jó.
Zh kidolgozások:
Régi elméleti összefoglalók:
- 2007-es elméleti összefoglaló (a kelleténél részletesebb)
KisZH-k, beugrók
2., 4. gyakorlaton, továbbá az utolsó előadáson van kisZH, mindegyik 10 pontos.
Ezek közül a kettő legjobb eredménye számít, egyiket sem kötelező megírni.
Minta kisZH-k:
1. kisZH
1. Dióda rajzjele, anód és katód feltüntetésével
2. Földelt emitteres tranzisztor bemeneti karakterisztikája (másik csoportnak kimeneti karakterisztikája) a tengelyek jelölésével
3. Földelt emitteres tranzisztor szaturációs kollektor feszültségének (Uces) nagyságrendje (karikázni): 1 mV, 100 mV, 1 kV / másik csoportnak a B/Bn/béta nagyságrendje
4. Volt egy egyszerű kapcsolás Vcc - R - LED - gnd, meg volt adva mind, ebből a LED áramát kellett meghatározni.
5. Ellenállások soros kapcsolásából egyik ellenálláson eső feszültség számítása: Vcc - R1 - R2 - gnd, meg volt adva mind, ebből kellett U1
1. dióda, tranzisztor rajzolása volt.
2. hullámforma és mi lesz belőle egyutas/kétutas irányítás után.
3. egy alap diódás feladat
4. 2 ellenállás párhuzamosan/sorosan kötve és milyen arányban folyik az áram rajtuk vagy eredő stb.
5. 3 közül választós: a dióda letörési feszültsége
2. kisZH
1. CMOS NOR vagy NAND kapu kapcsolasi rajz
2. Töltéspumpálás számolás
3. Órajel fele eseten hogyan véltozik a teljesítmény
4. mennyi idő alatt töltődik fel 3,3V-ra a kondi, ha a C 10 pikofarad, I 10 mikroamper.
5. Mit jelent az, hogy rail-to-rail?
1. Hány pMOS kell egy A+B*C logikai függvény megvalósításához?
2. Mit kell írni ide a transzfer-kapuk két oldalára, hogy D-FFet kapjunk? Hol a kimenete?
3. Valósítsd meg azt a logikai függvényt, hogy A+B*C!
4. ? 5. ?
3. kisZH
1. Egy 12 bites D/A átalakító referencia feszültsége 4V. Mekkora lesz a kimenet
feszültsége, ha a D/A regiszterében 0x0a00 érték van?
1. Egy 12 bites A/D átalakító referencia feszültsége 4,096V. Mekkora a bemenet feszültsége, ha az A/D regiszterében 0x2000 érték van?
1. ZH
Elméleti kérdések (20 pont) + Számpéldák (10 pont) -- 60 perc
- 2011
- A,B csoport - 2011 1.zh megoldás nélkül
2. ZH
Elméleti kérdések (20 pont) + Számpéldák (30 pont) -- 90 perc
- 2010
- A,B csoport - 2010 2.zh megoldás nélkül
- 2011
- A,B csoport - 2011 2.zh megoldás nélkül
- 2012
- A,B csoport - 2012 2.zh megoldás nélkül
Tippek
Tippek a gyakorlatokhoz:
- Ne illetődj meg ha gyak közben újra kell indítani a gépet, ezt leszámítva a gyakorlatokkal hamar lehet végezni.
Tippek feladatokhoz:
- Ohm-törvényt, Kirchoff törvényeket (másnéven hurok ill. csomóponti törvényeket) illik ismerni, nélkülük "elég" nehéz boldogulni. Érdemes minél több hurokra felírni huroktörvényt, előbb-utóbb lesz annyi egyenleted (persze az alapképletekkel együtt) ahány ismeretlened...:)
- A diódán mindig feszültség esik (néha mást adnak meg -re, akkor az) nyitóirányban, záróirányban pedig szakadásként viselkedik, azaz kb. olyan, mintha el lenne vágva a vezeték.
- Zener diódás feladatoknál a dióda mindig záróirányba van előfeszítve, ott a letörési feszültség esik a diódán, de amikor a diódán eső feszültséget kérdezik, mindig hozzá kell számolni a differenciális ellenállásán eső feszültséget. (ehhez általában meg van adva a diff. ellenállása, az áramot meg általában ki lehet számolni a másik ellenállás segítségével, ezek után ), tehát mondjuk egy letörési feszültségű Zener diódán ilyen esik (kb.).
- A drain a pozitívabb feszültségű, a source a negatívabb. És az általunk vett egyszerű esetekben az áramkörökben a föld a legnegatívabb, a táp a legpozitívabb.
- A bipoláris tranzisztorra: és , ezekből kell kiindulni normál aktív állapotban (áltálában -t adják meg vagy egyszerűen ki lehet számolni, -t pedig mindig megadják), és miután megvan és így a kollektor és emitter ellenállásokon eső feszültséget egy Ohm-törvény alkalmazással meghatározhatjuk.
- MOS tranzisztorokról annyit érdemes tudni, hogy Isource=Idrain, azaz tulajdonképpen csak "egyféle" árama van. Az Igate mindig 0. Az képletből általában egyetlen dolog hiányzik.
- JFET-re: , ebből szintén általában csak 1 dolog hiányzik.
- A helyettesítő képeket is előszeretettel kérdezgetik mostanában erről viszont fogalmam sincs, ha valaki tudja, hogyan kell felrajzolni őket, írja be ide.
- És egy általános tanács: sokszor segíthet, ha az ábrára berajzolgatjátok, hogy hol mekkora a feszültség, az egyes ellenállásokon, diódákon és tranzisztorok átmenetein mekkora feszültség esik, illetve merre mekkora áram folyik. Könnyen feltűnhet, hogy hoppá hiszen minden megvan egy adott hurokban, vagy csomópontban és akkor a maradék áramnak merre kell folyni, vagy a hiányzó feszültségnek hol kell esnie.
Gyakvezérek
Bein Márton, beinATeet.bme.hu
Czett Andor, czettATeet.bme.hu
Horváth Péter, horvathpATeet.bme.hu
Jani Lázár, jcoleeATt-online.hu
Nagy Gergely, nagygATeet.bme.hu
Ress Sándor, ressATeet.bme.hu
Riedl Tamás, tomessz89ATgmail.com
Takács Gábor, takacsATeet.bme.hu
Végh Gerzson, veghATeet.bme.hu
Kedvcsináló
Kis odafigyeléssel a tárgy könnyen teljesíthető négyesre-ötösre.