„Bode-diagram kézi rajzolása” változatai közötti eltérés
A VIK Wikiből
a Hryghr átnevezte a(z) Bode diagram rajzolása, amikor nincs kéznél matlab lapot a következő névre: Bode-diagram kézi rajzolása: lényegretörőbb cím, +kötőjel |
Nincs szerkesztési összefoglaló |
||
7. sor: | 7. sor: | ||
#'''A görbe kezdő meredeksége:''' ezt az integrátorokból (szimpla s szorzótagok az átviteli függvényben) nézhető meg, ha nincs ilyen: a meredekség 0, a görbe vízszintesen indul, ha egy van (egyszeres integrátor): -20dB/dekád a kezdő meredekség, ha kettő van, azaz <math>s^2</math> van (kétszeres integrátor): -40dB/dekád. A fenti példában egyszeres integrátor van, azaz -20dB/dekád a kezdő meredekség. | #'''A görbe kezdő meredeksége:''' ezt az integrátorokból (szimpla s szorzótagok az átviteli függvényben) nézhető meg, ha nincs ilyen: a meredekség 0, a görbe vízszintesen indul, ha egy van (egyszeres integrátor): -20dB/dekád a kezdő meredekség, ha kettő van, azaz <math>s^2</math> van (kétszeres integrátor): -40dB/dekád. A fenti példában egyszeres integrátor van, azaz -20dB/dekád a kezdő meredekség. | ||
#'''Az x tengely metszésének pontja:''' (vágási körfrekvencia, <math>\omega_c</math>): ezt a meredekség és az átviteli függvény szorzókonstansa (K) határozzák meg: ha a görbe meredeksége 0dB/dekád akkor nem metszi az x tengelyt (mert vízszintesen halad), ha -20dB/dekád, akkor K-nál metszi, ha -40dB/dekád, akkor <math>\sqrt{K}</math>-nál. Az egyes fel/letörések miatt úgy lehet nyomon követni, hol lesz a metszés helye, hogy megnézzük az integrátorokat/a kezdő meredekséget: ha K-ig nem változik a görbe meredeksége, akkor a meredekségnek megfelelően metszi (pl: egyszeres integrátor, K=5, ekkor -20dB/dekádos meredekséggel megy át az x tengelyen 5-nél), ha előtte megváltozik, akkor annak megfelelően (pl: kétszeres integrátor, K=16, 2-nél feltörik, ekkor 2-ig -40dB/dekád a meredekség, a tengelyt <math>\sqrt{16}</math>-nál metszené, de a feltörés miatt 2 után -20dB/dekáddal metszi az x tengelyt 16-nál.). A fenti példában K=2, egyszeres integrátor, -1-nél letörés van, ezért -40dB/dekád meredekséggel a <math>\sqrt{2}</math> pontban metszi. | #'''Az x tengely metszésének pontja:''' (vágási körfrekvencia, <math>\omega_c</math>): ezt a meredekség és az átviteli függvény szorzókonstansa (K) határozzák meg: ha a görbe meredeksége 0dB/dekád akkor nem metszi az x tengelyt (mert vízszintesen halad), ha -20dB/dekád, akkor K-nál metszi, ha -40dB/dekád, akkor <math>\sqrt{K}</math>-nál. Az egyes fel/letörések miatt úgy lehet nyomon követni, hol lesz a metszés helye, hogy megnézzük az integrátorokat/a kezdő meredekséget: ha K-ig nem változik a görbe meredeksége, akkor a meredekségnek megfelelően metszi (pl: egyszeres integrátor, K=5, ekkor -20dB/dekádos meredekséggel megy át az x tengelyen 5-nél), ha előtte megváltozik, akkor annak megfelelően (pl: kétszeres integrátor, K=16, 2-nél feltörik, ekkor 2-ig -40dB/dekád a meredekség, a tengelyt <math>\sqrt{16}</math>-nál metszené, de a feltörés miatt 2 után -20dB/dekáddal metszi az x tengelyt 16-nál.). A fenti példában K=2, egyszeres integrátor, -1-nél letörés van, ezért -40dB/dekád meredekséggel a <math>\sqrt{2}</math> pontban metszi. | ||
#'''Amplitúdó-körfrekvencia görbe felrajzolása:''' (könyv | #'''Amplitúdó-körfrekvencia görbe felrajzolása:''' ''(Lásd: könyv 88. old.)'' Itt az eddigieket kell összegyúrni eggyé, előbb bejelölöd a pontokat, ahol történik valami, majd utána rajzolod meg a görbét, az y tengelyen <math>|L(j\omega|</math>, az x tengelyen <math>\omega</math> értékével.<br/>[[Fájl:Bode-diagram_amplitudo.jpg]] | ||
#'''Fázisgörbe értéke:''' (ez a másik görbe, a <math>\varphi</math>-s, rendes nevén: fázis-körfrekvencia görbe) a görbéhez képzeljünk el sávokat, ahol 90° a lépték az egyes értékek közt. A fenti fel/letöréseknek megfelelően változik, ha feltörik, akkor az érték nő 90°-al, ha letörik, akkor csökken 90°-al. Viszont ez nem egyik pillanatról a másikba megy végbe, hanem "átmenetszerűen", rajzban ez azt jelenti, hogy fel/letörésnél már félúton van az új állapot felé.<br/>[[Fájl:Bode-diagram fazis.jpg]] | |||
#'''Fázisgörbe értéke:''' (ez a másik görbe, a <math>\varphi</math>-s, rendes nevén: fázis-körfrekvencia görbe) a görbéhez képzeljünk el sávokat, ahol 90° a lépték az egyes értékek közt. A fenti fel/letöréseknek megfelelően változik, ha feltörik, akkor az érték nő 90°-al, ha letörik, akkor csökken 90°-al. Viszont ez nem egyik pillanatról a másikba megy végbe, hanem "átmenetszerűen", rajzban ez azt jelenti, hogy fel/letörésnél már félúton van az új állapot felé | |||
#'''Fázisgörbe kezdőértéke:''' ez az integrátorok, és az átviteli függvény szorzókonstansán múlik: a konstans ha pozitív, akkor 0° a kezdőérték, ha negatív, akkor -180°, az integrátor(ok) miatt 0-ban -90°-al jobban változik (-180°-al, ha kétszeres), illetve, ha a számlálóban volt egy szimpla s tag, akkor az 90°-al növeli. Pl: konstans negatív, egyszeres integrátor: -180°+(-90°)=-270°, konstans pozitív, számlálóban egy szimpla s: 0°+90°=90°. A fenti példában konstans pozitív, egyszeres integrátor: 0°-90°=-90°. | #'''Fázisgörbe kezdőértéke:''' ez az integrátorok, és az átviteli függvény szorzókonstansán múlik: a konstans ha pozitív, akkor 0° a kezdőérték, ha negatív, akkor -180°, az integrátor(ok) miatt 0-ban -90°-al jobban változik (-180°-al, ha kétszeres), illetve, ha a számlálóban volt egy szimpla s tag, akkor az 90°-al növeli. Pl: konstans negatív, egyszeres integrátor: -180°+(-90°)=-270°, konstans pozitív, számlálóban egy szimpla s: 0°+90°=90°. A fenti példában konstans pozitív, egyszeres integrátor: 0°-90°=-90°. | ||
#'''Fázistöbblet meghatározása:''' ''(könyv | #'''Fázistöbblet meghatározása:''' ''(Lásd: könyv 190-191. old)'' fázistöbblet fázis-körfrekvencia görbe értékének különbsége -180°-tól a vágási körfrekvenciánál. Azaz ahol a dB-es görbe metszi az x tengelyt, ott megnézed a <math>\varphi</math>-s görbe értéke mennyire tér el a -180°-os vonaltól. Ezt a meredekség határozza meg mekkora lesz: ha -20dB/dekáddal metszi az x tengelyt: a fázistöbblet biztosan pozitív ''(Lásd: könyv 191.old, 5.35 ábra)'', ha -40dB/dekáddal metszi: a fázistöbbletet nem lehet meghatározni biztosan, olyat rajzolsz, mint az 5.36-os ábrán, ha -60dB/dekáddal metszi: a fázistöbblet biztosan negatív, ekkor a 180°-os vonal alatt megy el. A fenti példában -40dB/dekád meredekséggel a <math>\sqrt{2}</math> pontban metszi az x tengelyt a dB-es függvény, ezért a fázistöbbletet nem tudjuk meghatározni biztosan, a stabilitás határhelyzetében van. | ||
#'''Fázis-körfrekvencia görbe felrajzolása:''' | #'''Fázis-körfrekvencia görbe felrajzolása:''' <br/>[[Fájl:Bode-diagram fazis teljes.jpg]] | ||
#'''Stabilis-e a rendszer:''' vagy azt nézed, hogy a fázistöbblet pozitív-e, vagy azt, hogy a jobboldali számsíkon van-e pólus: ha nincs, akkor stabilis. | #'''Stabilis-e a rendszer:''' vagy azt nézed, hogy a fázistöbblet pozitív-e, vagy azt, hogy a jobboldali számsíkon van-e pólus: ha nincs, akkor stabilis. | ||
#'''Statikus hiba:''' megnézed az integrátorok számát, az adja a típusszámot, és azt a sort írod le a táblázatból (140. oldal). | #'''Statikus hiba:''' megnézed az integrátorok számát, az adja a típusszámot, és azt a sort írod le a táblázatból (140. oldal). | ||
33. sor: | 32. sor: | ||
==Egy másik jó leírás: [https://wiki.sch.bme.hu/bin/view/Infoalap/SzabTechNyquistBode Nyquist, Bode]== | <!--==Egy másik jó leírás: [https://wiki.sch.bme.hu/bin/view/Infoalap/SzabTechNyquistBode Nyquist, Bode]==--> | ||
A lap 2013. április 3., 17:32-kori változata
A Bode-diagram kézi rajzolása több tantárgyból is előjöhet. Ehhez nyújt segítséget az alábbi leírás, melyet Ndroo készített Keviczky-féle Szabályozástechnika-könyv és a BodePlots.pdf alapján
A Bode-diagram készítésének lépései
- Átviteli függvény átalakítása: Ha a feladatban ehhez hasonló alak van: , akkor át kell alakítani ilyen alakká: . Először a számlálót és a nevezőt is szorzattá kell alakítani, aztán annyit emelünk ki, hogy az s nélküli tagok értéke 1 legyen: . Így minden tényező alakú lesz; ha eleve így adták meg, akkor ezt a lépést ki kell hagyni.
- Pólusok/zérusok felírása: Zérusok: azok a helyek ahol a számláló értéke 0 lesz, pólusok: azok a helyek, ahol a nevező értéke lesz 0. Minden szorzatalakra fel kell írni a következőt: , itt lesz a számláló/nevező értéke nulla, pl.: az egyik pólus, a többi: -nél, -nál van, a zérus: -nél van.
- Fel/letörés: Ez az amplitúdó-körfrekvencia görbéhez kell (a dB-es). A pontok, ahol a görbe fel/letörik: alakból vagy s abszolútértéke, vagy értéke (a kettő abszolútértékben ugyanaz, úgy számold ki, ahogy jól esik). A görbe feltörik, ha zéruson megy át, ilyenkor a meredeksége 20dB/dekáddal nő (a függvény meredekéségét magasabbra rajzolod), illetve letörik, ha póluson megy át, a meredeksége itt 20dB/dekáddal csökken.
- A görbe kezdő meredeksége: ezt az integrátorokból (szimpla s szorzótagok az átviteli függvényben) nézhető meg, ha nincs ilyen: a meredekség 0, a görbe vízszintesen indul, ha egy van (egyszeres integrátor): -20dB/dekád a kezdő meredekség, ha kettő van, azaz van (kétszeres integrátor): -40dB/dekád. A fenti példában egyszeres integrátor van, azaz -20dB/dekád a kezdő meredekség.
- Az x tengely metszésének pontja: (vágási körfrekvencia, ): ezt a meredekség és az átviteli függvény szorzókonstansa (K) határozzák meg: ha a görbe meredeksége 0dB/dekád akkor nem metszi az x tengelyt (mert vízszintesen halad), ha -20dB/dekád, akkor K-nál metszi, ha -40dB/dekád, akkor -nál. Az egyes fel/letörések miatt úgy lehet nyomon követni, hol lesz a metszés helye, hogy megnézzük az integrátorokat/a kezdő meredekséget: ha K-ig nem változik a görbe meredeksége, akkor a meredekségnek megfelelően metszi (pl: egyszeres integrátor, K=5, ekkor -20dB/dekádos meredekséggel megy át az x tengelyen 5-nél), ha előtte megváltozik, akkor annak megfelelően (pl: kétszeres integrátor, K=16, 2-nél feltörik, ekkor 2-ig -40dB/dekád a meredekség, a tengelyt -nál metszené, de a feltörés miatt 2 után -20dB/dekáddal metszi az x tengelyt 16-nál.). A fenti példában K=2, egyszeres integrátor, -1-nél letörés van, ezért -40dB/dekád meredekséggel a pontban metszi.
- Amplitúdó-körfrekvencia görbe felrajzolása: (Lásd: könyv 88. old.) Itt az eddigieket kell összegyúrni eggyé, előbb bejelölöd a pontokat, ahol történik valami, majd utána rajzolod meg a görbét, az y tengelyen , az x tengelyen értékével.
- Fázisgörbe értéke: (ez a másik görbe, a -s, rendes nevén: fázis-körfrekvencia görbe) a görbéhez képzeljünk el sávokat, ahol 90° a lépték az egyes értékek közt. A fenti fel/letöréseknek megfelelően változik, ha feltörik, akkor az érték nő 90°-al, ha letörik, akkor csökken 90°-al. Viszont ez nem egyik pillanatról a másikba megy végbe, hanem "átmenetszerűen", rajzban ez azt jelenti, hogy fel/letörésnél már félúton van az új állapot felé.
- Fázisgörbe kezdőértéke: ez az integrátorok, és az átviteli függvény szorzókonstansán múlik: a konstans ha pozitív, akkor 0° a kezdőérték, ha negatív, akkor -180°, az integrátor(ok) miatt 0-ban -90°-al jobban változik (-180°-al, ha kétszeres), illetve, ha a számlálóban volt egy szimpla s tag, akkor az 90°-al növeli. Pl: konstans negatív, egyszeres integrátor: -180°+(-90°)=-270°, konstans pozitív, számlálóban egy szimpla s: 0°+90°=90°. A fenti példában konstans pozitív, egyszeres integrátor: 0°-90°=-90°.
- Fázistöbblet meghatározása: (Lásd: könyv 190-191. old) fázistöbblet fázis-körfrekvencia görbe értékének különbsége -180°-tól a vágási körfrekvenciánál. Azaz ahol a dB-es görbe metszi az x tengelyt, ott megnézed a -s görbe értéke mennyire tér el a -180°-os vonaltól. Ezt a meredekség határozza meg mekkora lesz: ha -20dB/dekáddal metszi az x tengelyt: a fázistöbblet biztosan pozitív (Lásd: könyv 191.old, 5.35 ábra), ha -40dB/dekáddal metszi: a fázistöbbletet nem lehet meghatározni biztosan, olyat rajzolsz, mint az 5.36-os ábrán, ha -60dB/dekáddal metszi: a fázistöbblet biztosan negatív, ekkor a 180°-os vonal alatt megy el. A fenti példában -40dB/dekád meredekséggel a pontban metszi az x tengelyt a dB-es függvény, ezért a fázistöbbletet nem tudjuk meghatározni biztosan, a stabilitás határhelyzetében van.
- Fázis-körfrekvencia görbe felrajzolása:
- Stabilis-e a rendszer: vagy azt nézed, hogy a fázistöbblet pozitív-e, vagy azt, hogy a jobboldali számsíkon van-e pólus: ha nincs, akkor stabilis.
- Statikus hiba: megnézed az integrátorok számát, az adja a típusszámot, és azt a sort írod le a táblázatból (140. oldal).
Típusszám | 0 | 1 | 2 |
egységugrás | 0 | 0 | |
sebességugrás | 0 | ||
gyorsulásugrás |
0 jelentése: hiba nélkül követi jelentése: nem tudja követni