„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés

David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
3. sor: 3. sor:
__TOC__
__TOC__


==1. Egy végtelen hosszú, I szinuszos áramot szállító vezetőtől r távolságban lévő pontban határozza meg a H térerősséget és a B indukciót!==
==1. Egy végtelen hosszú, '''I''' szinuszos áramot szállító vezetőtől '''r''' távolságban lévő pontban határozza meg a '''H''' térerősséget és a '''B''' indukciót!==


Maxwell 1. egyenlete (gerjesztési törvény):
Maxwell 1. egyenlete (gerjesztési törvény):
17. sor: 17. sor:
[[Fájl:Labor2 kép3.jpg]]
[[Fájl:Labor2 kép3.jpg]]


==2. Egy végtelen hosszú, _I_ szinuszos áramot szállító vezető síkjában egy téglalap alakú, _a_ x _b_ méretű vezetőkeret helyezkedik el. A vezetőkeret _a_ méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!==
==2. Egy végtelen hosszú, '''I''' szinuszos áramot szállító vezető síkjában egy téglalap alakú, '''a x b''' méretű vezetőkeret helyezkedik el. A vezetőkeret '''a''' méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!==


A Faraday-féle indukciótörvény felhasználásával:
A Faraday-féle indukciótörvény felhasználásával:
32. sor: 32. sor:
[[Fájl:Labor2 kép4.jpg]]
[[Fájl:Labor2 kép4.jpg]]


<div align="center">{{InLineImageLink|Villanyalap|Labor2Kerdes3|2.jpg}}</div>
==3. Egy téglalap alakú, '''A x B''' méretű, '''I''' szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, '''a x b''' méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az '''A''' és '''a''' illetve '''B''' és '''b''' méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?==


==3. Egy téglalap alakú, _A_ x _B_ méretű, _I_ szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, _a_ x _b_ méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az _A_ és _a_ illetve _B_ és _b_ méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?==
Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása.


Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása.
<math> \Sigma \Phi = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left( a \cdot \ln \frac{d+b}{d} + a \cdot \ln \frac{B-d}{B-b-d} + b \cdot \ln \frac{a+c}{c} + b \cdot \ln \frac{A-c}{A-a-c} \right) = </math>
<math> = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \left(\ln \frac{d+b}{d} + \ln \frac{B-d}{B-b-d}\right) + b \cdot \left(\ln \frac{a+c}{c} + \ln \frac{A-c}{A-a-c}\right) \right] = </math>
<math> = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>
<math> U_{\mathrm{i}} = - \frac{\partial\Phi}{\partial t} = - \frac{\mu \cdot \hat{I} \cdot (- \sin \omega t) \cdot \omega}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] = </math>
<math> = \frac{\mu \cdot \hat{I}  \cdot \omega \cdot \sin \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>


<math>
<math> L_{\mathrm{k}} = \frac{\Phi}{I} = \frac{\mu}{2 \pi } \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>
\begin{displaymath}
\Sigma \Phi = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left( a \cdot \ln \frac{d+b}{d} + a \cdot \ln \frac{B-d}{B-b-d} + b \cdot \ln \frac{a+c}{c} + b \cdot \ln \frac{A-c}{A-a-c} \right) =
\end{displaymath}
\begin{displaymath}
= \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \left(\ln \frac{d+b}{d} + \ln \frac{B-d}{B-b-d}\right) + b \cdot \left(\ln \frac{a+c}{c} + \ln \frac{A-c}{A-a-c}\right) \right] =
\end{displaymath}
\begin{displaymath}
= \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right]
\end{displaymath}
\begin{displaymath}
U_{\mathrm{i}} = - \frac{\partial\Phi}{\partial t} = - \frac{\mu \cdot \hat{I} \cdot (- \sin \omega t) \cdot \omega}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] =
\end{displaymath}
\begin{displaymath}
= \frac{\mu \cdot \hat{I}  \cdot \omega \cdot \sin \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right]
\end{displaymath}
\begin{displaymath}
L_{\mathrm{k}} = \frac{\Phi}{I} = \frac{\mu}{2 \pi } \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right]
\end{displaymath}</math>


<div align="center">{{InLineImageLink|Villanyalap|Labor2Kerdes3|3.jpg}}</div>
[[Fájl:Labor2 kép5.jpg]]


==4. Határozza meg két végtelen hosszú, párhuzamosan futó hengeres vezető között a hosszegységre eső villamos kapacitást!==
==4. Határozza meg két végtelen hosszú, párhuzamosan futó hengeres vezető között a hosszegységre eső villamos kapacitást!==


<math>
<math> C' = \frac{2 \pi \varepsilon}{\ln \frac{d^2}{r_1 r_2}} = \frac{\pi \varepsilon}{\ln \frac{d}{r}} </math>
\begin{displaymath}
C' = \frac{2 \pi \varepsilon}{\ln \frac{d^2}{r_1 r_2}} = \frac{\pi \varepsilon}{\ln \frac{d}{r}}
\end{displaymath}</math>


A második összefüggés abban az esetben érvényes, ha a kettősvezeték (Lecher-vezeték) mindkét vezetője azonos sugarú.
A második összefüggés abban az esetben érvényes, ha a kettősvezeték (Lecher-vezeték) mindkét vezetője azonos sugarú.


<div align="center">{{InLineImageLink|Villanyalap|Labor2Kerdes3|4.jpg}}</div>
[[Fájl:Labor2 kép6.jpg]]


==5. Határozza meg nyomtatott huzalozás esetén egy vezetőszakasz ellenállását és annak bizonytalanságát!==
==5. Határozza meg nyomtatott huzalozás esetén egy vezetőszakasz ellenállását és annak bizonytalanságát!==


<math>
<math> R = \varrho \cdot \frac{l}{a \cdot h} </math>
\begin{displaymath}
 
R = \varrho \cdot \frac{l}{a \cdot h}
Ahol ''<math>\varrho</math>'' a fajlagos ellenállás, '''l''' a vezetékszakasz hossza, '''a''' a szélessége, '''h''' pedig a vastagsága.
\end{displaymath}</math>
 
<math> \Delta R = \frac{\partial R}{\partial \varrho} \cdot \Delta \varrho + \frac{\partial R}{\partial l} \cdot \Delta l + \frac{\partial R}{\partial a} \cdot \Delta a + \frac{\partial R}{\partial h} \cdot \Delta h </math>
 
<math> \Delta R = \frac{l}{a \cdot h} \cdot \Delta \varrho + \frac{\varrho}{a \cdot h} \cdot \Delta l - \varrho \cdot \frac{l}{a^2 \cdot h} \cdot \Delta a - \varrho \cdot \frac{l}{a \cdot h^2} \cdot \Delta h </math>


Ahol ''<math>\varrho</math>'' a fajlagos ellenállás, _l_ a vezetékszakasz hossza, _a_ a szélessége, _h_ pedig a vastagsága.
<math> \frac{\Delta R}{R} = \frac{\Delta \varrho}{\varrho} + \frac{\Delta l}{l} - \frac{\Delta a}{a} - \frac{\Delta h}{h} </math>


<math>
<math> u_R = \sqrt{\left(\frac{\Delta \varrho}{\varrho}\right)^2 + \left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta h}{h}\right)^2} </math>
\begin{displaymath}
\Delta R = \frac{\partial R}{\partial \varrho} \cdot \Delta \varrho + \frac{\partial R}{\partial l} \cdot \Delta l + \frac{\partial R}{\partial a} \cdot \Delta a + \frac{\partial R}{\partial h} \cdot \Delta h
\end{displaymath}
\begin{displaymath}
\Delta R = \frac{l}{a \cdot h} \cdot \Delta \varrho + \frac{\varrho}{a \cdot h} \cdot \Delta l - \varrho \cdot \frac{l}{a^2 \cdot h} \cdot \Delta a - \varrho \cdot \frac{l}{a \cdot h^2} \cdot \Delta h
\end{displaymath}
\begin{displaymath}
\frac{\Delta R}{R} = \frac{\Delta \varrho}{\varrho} + \frac{\Delta l}{l} - \frac{\Delta a}{a} - \frac{\Delta h}{h}
\end{displaymath}
\begin{displaymath}
u_R = \sqrt{\left(\frac{\Delta \varrho}{\varrho}\right)^2 + \left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta h}{h}\right)^2}
\end{displaymath}</math>


A standard bizonytalanság számításakor tehát az egyes hibakomponenseket valószínűségi módon kell összegezni (ld. GUM).
A standard bizonytalanság számításakor tehát az egyes hibakomponenseket valószínűségi módon kell összegezni (ld. GUM).


<div align="center">{{InLineImageLink|Villanyalap|Labor2Kerdes3|5.jpg}}</div>
[[Fájl:Labor2 kép7.jpg]]


==6. Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!==
==6. Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!==