„Záróvizsga kvíz - Algoritmusok” változatai közötti eltérés

A VIK Wikiből
kérdések hozzáadása
a typo
 
(4 közbenső módosítás ugyanattól a felhasználótól nincs mutatva)
260. sor: 260. sor:
A teljesen kitöltött <math>T</math> táblázat segítségével hogyan kaphatjuk meg azt, hogy hányféleképpen lehet eljutni a bal felső cellából a legalsó sorba?
A teljesen kitöltött <math>T</math> táblázat segítségével hogyan kaphatjuk meg azt, hogy hányféleképpen lehet eljutni a bal felső cellából a legalsó sorba?
{{Kvízkérdés|típus=egy|válasz=5}}
{{Kvízkérdés|típus=egy|válasz=5}}
# <math>\max _{1 < i < n} T[i, n]</math> adja meg ezt.
# <math>\max _{1 \le i \le n} T[i, n]</math> adja meg ezt.
# <math>\Sigma_{i=1}^{n} T[i, n]</math> adja meg ezt.
# <math>\Sigma_{i=1}^{n} T[i, n]</math> adja meg ezt.
# <math>T[n, n]</math> adja meg ezt.
# <math>T[n, n]</math> adja meg ezt.
417. sor: 417. sor:


== Az alábbi bináris keresőfa csúcsait a posztorder és a preorder bejárás szerinti sorrendben is kiírjuk. (2021 jan) ==
== Az alábbi bináris keresőfa csúcsait a posztorder és a preorder bejárás szerinti sorrendben is kiírjuk. (2021 jan) ==
TODO kép
[[Fájl:2021 jan info zv algo keresofa.png|keretnélküli]]
 
Melyik álítás igaz?
Melyik álítás igaz?
{{Kvízkérdés|típus=egy|válasz=1}}
{{Kvízkérdés|típus=egy|válasz=1}}
532. sor: 533. sor:
# Csak az A, a B és a D.
# Csak az A, a B és a D.
# Csak a B és a D.
# Csak a B és a D.
== Az <math>f(n)</math> függvényről azt tudjuk, hogy <math>f(n) \in O\left(n^{2}\right)</math> Az alábbiak közül melyik lehet <math>f</math> ? (Mindegyik logaritmus kettes alapú.) (2020 jan) ==
{{Kvízkérdés|típus=egy|válasz=2}}
# <math>f(n)=3 \cdot 2^{(\log n)^{2}}+85 n^{2}</math>
# <math>f(n)=10 \cdot n \log n+12 n^{1,5}-8</math>
# <math>f(n)=3 n \log (n !)</math>
# <math>f(n)=20 \cdot \frac{n^{3}}{\log n}-15 n^{2}</math>
# Egyik sem lehet.
==  A kezdetben üres, <math>M=17</math> méretü <math>A</math> hash-táblába a <math>h(x) \equiv x(\bmod 17)</math> hash-függvényt és lineáris próbát használva beraktunk 9 elemet, majd kitöröltük az egyiket. Ha tudjuk, hogy a törlés után a nem üres mezők tartalma (2020 jan) ==
A[3]=4, \quad A[4]=22, \quad A[5]=5, \quad A[7]=44, \quad A[9]=26, \quad A[10]=11, \quad A[11]=28, \quad A[16]=33,
akkor hol volt a törölt elem?
{{Kvízkérdés|típus=egy|válasz=1}}
# <math>A[8]</math>-ban
# <math>A[6]</math>-ban
# <math>A[9]</math>-ben
# Nem határozható meg.
# Az elözőek egyike sem helyes.
==  Az angol ábécé 26 betűjéből és a 10 számjegyből hány olyan 8 hosszú sorozat készíthető, melyben sem két betü, sem két számjegy nem állhat egymás mellett? (Egy betü vagy számjegy többször is használható.) (2020 jan) ==
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>26 \cdot 25 \cdot 24 \cdot 23 \cdot 10 \cdot 9 \cdot 8 \cdot 7</math>
# <math>2 \cdot\left[\left(\begin{array}{c}26 \\ 4\end{array}\right)+\left(\begin{array}{c}10 \\ 4\end{array}\right)\right]</math>
# <math>2 \cdot 26^{4} \cdot 10^{4}</math>
# <math>26 \cdot 25 \cdot 24 \cdot 23+10 \cdot 9 \cdot 8 \cdot 7</math>
# Az előzőek egyike sem helyes.
==  Az alábbi gráfon a Kruskal-algoritmust használtuk minimális feszítőfa keresésre. Azt tapasztaltuk, hogy az algoritmus által kiválasztott első 3 él sorrendben a következő: <math>E C, D B, D E</math> A felsorolt lehetőségek közül melyik lehet igaz az ismeretlen élsúlyokra? (2020 jan) ==
[[Fájl:2020 jan info zv kruskal.png|keretnélküli]]
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>x=1, y=5</math>
# <math>x=5, y=1</math>
# <math>x=y</math>
# A fentiek egyike sem lehetséges.
== A <math>G=(V, E)</math> egyszerủ, irányítatlan gráf csúcsain adott egy <math>f: V \rightarrow\{0,1,2\}</math> függvény. Melyik feltétel írja le azt, hogy ez a függvény a gráfnak egy szabályos 3 színnel való színezése? (2020 jan) ==
{{Kvízkérdés|típus=egy|válasz=2}}
# Minden <math>a, b \in V</math> párra, ha <math>a \neq b</math>, akkor <math>f(a) \neq f(b)</math>
# Minden <math>a, b \in V</math> párra, ha <math>\{a, b\} \in E</math>, akkor <math>f(a) \neq f(b)</math>
# Minden <math>a, b \in V</math> párra, ha <math>f(a) \neq f(b)</math>, akkor <math>\{a, b\} \in E</math>
# Minden <math>a, b \in V</math> párra, ha <math>\{a, b\} \notin E</math>, akkor <math>f(a)=f(b)</math>
== Tegyük fel, hogy <math>\mathrm{P} \neq \mathrm{NP}</math> Tekintsük azt a problémát, amikor adottak az <math>a_{1}, a_{2}, \ldots, a_{n}</math> pozitív egész számok, és azt kell eldönteni, hogy van-e olyan <math>I \subseteq\{1,2, \ldots, n\}</math>, melyre <math>\sum_{i \in I} a_{i}=2020</math> (2020 jan) ==
{{Kvízkérdés|típus=egy|válasz=1}}
Melyik állítás igaz az alábbiak közül?
# A probléma P-ben és NP-ben is benne van.
# A probléma P-ben van, de nincs NP-ben.
# A probléma P-ben van és NP-teljes.
# A probléma NP-teljes és nincs P-ben.
== Tegyük fel, hogy <math>\mathrm{P} \neq \mathrm{NP}</math> és jelölje <math>P_{1} \prec P_{2}</math> azt, hogy a <math>P_{1}</math> probléma Karp-redukálható (polinomiálisan visszavezethető) a <math>P_{2}</math> problémára. Tekintsük az alábbi három problémát. (2020 jan) ==
Adott egy <math>(G, k)</math> pár, ahol <math>G</math> egy irányítatlan gráf, <math>k</math> egy pozitív egész és a kérdés az alábbi:
<math>\mathcal{A}</math> : a <math>G</math> gráfban van-e legalább <math>k</math> pontból álló kör
<math>\mathcal{B}</math> : a <math>G</math> gráfban van-e legfeljebb <math>k</math> pontból álló kör
<math>\mathcal{C}</math> : a <math>G</math> gráfban van-e pontosan <math>k</math> pontból álló kör
Melyik állítás helyes az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>\mathcal{C} \prec \mathcal{A}</math> és <math>\mathcal{C} \prec \mathcal{B}</math>
# <math>\mathcal{A} \prec \mathcal{C}</math> és <math>\mathcal{A} \prec \mathcal{B}</math>
# <math>\mathcal{B} \prec \mathcal{C}</math> és <math>\mathcal{C} \prec \mathcal{A}</math>
# <math>\mathcal{A} \prec \mathcal{B}</math> és <math>\mathcal{B} \prec \mathcal{C}</math>
== Legyen adott egy <math>G</math> gráf, melynek adott két különböző csúcsa <math>A</math> és <math>B</math> Ez a két csúcs színtelen, a többi csúcs mindegyike vagy pirosra vagy kékre van színezve. (Szomszédos csúcsok lehetnek azonos színüek is.) Meg szeretnénk határozni a legkevesebb élú olyan utat <math>A</math>-ból <math>B</math>-be, ami csupa azonos színü csúcson megy át. Ehhez egy ismert algoritmust akarunk használni, akár többször is futtatva az alkalmas bemeneteken. (2020 jan) ==
Melyik helyes az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=2}}
# Irányított gráf esetében a Dijkstra-algoritmus segítségével a feladat megoldható, de szélességi kereséssel nem.
# Irányított gráf esetében a Dijkstra-algoritmus segítségével és szélességi kereséssel is megoldható a feladat.
# Irányítatlan gráf esetében sem a Dijkstra-algoritmus segítségével, sem szélességi bejárással nem oldható meg a feladat.
# Irányított és irányítatlan gráf esetében sem oldható meg a feladat a Dijkstra-algoritmus segítségével, de szélességi kereséssel mindig megoldható.
== Melyik feladatra nem ismert <math>O\left(n^{2}\right)</math> lépésben müködő algoritmus? (2020 jan) ==
{{Kvízkérdés|típus=egy|válasz=3}}
# Adott <math>n</math> különböző egész szám közül a legkisebb kiválasztása.
# Adott <math>n</math> csúcsú bináris keresőfában tárolt elemek közül a legnagyobb meghatározása.
# Adott <math>n</math> bites <math>k</math> egész számra <math>5^{k}</math> kiszámolása.
# Adott <math>n</math> csúcsú, irányított, körmentes gráfban az adott <math>s</math> csúcsból az adott <math>t</math> csúcsba vezető legkevesebb élü út meghatározása.
== Egy <math>n</math> hosszú <math>s=s_{1} s_{2} \cdots s_{n}</math> és egy <math>m</math> hosszú <math>t=t_{1} t_{2} \cdots t_{m}</math> sorozathoz a <math>T</math> tömböt definiáljuk a következőképpen: Legyen <math>T[0, j]=T[i, 0]=0</math> minden <math>1 \leq i \leq n</math> és <math>1 \leq j \leq m</math> estén, továbbá <math>T[0,0]=0</math> Az <math>1 \leq i \leq n</math> és <math>1 \leq j \leq m</math> esetekben pedig (2020 jan) ==
<math>T[i, j]= \begin{cases}\max \{T[i, j-1], T[i-1, j], T[i-1, j-1]+1\} & \text { ha } s_{i}=t_{j} \\ \max \{T[i, j-1], T[i-1, j]\} & \text { ha } s_{i} \neq t_{j}\end{cases}</math>
Legyen <math>n=100, m=20</math>, az <math>s</math> az a 0 -val kezdődő sorozat, melyben az 1-ek és 0-k felváltva követik egymást, azaz <math>s=010101 \cdots 01</math> és <math>t</math> az a sorozat, melynek első tíz eleme 0 , a második tíz pedig 1 . Az alábbiak közül melyik állítás helyes?
{{Kvízkérdés|típus=egy|válasz=2}}
# <math>T[1,10]=15</math>
# <math>T[2,20]=2</math>
# <math>T[100,15]=10</math>
# Az előzőek egyike sem igaz.
== Melyik az a legkisebb pozitív egész <math>d</math> szám, melyre <math>f(n) \in O\left(n^{d}\right)</math> teljesül, ha <math>f(n)=\sum_{k=1}^{n^{2}} \frac{k}{3}</math>? (2019 jun) ==
{{Kvízkérdés|típus=egy|válasz=3}}
# 2
# 3
# 4
# 5
# nincs ilyen d
== Ha az alábbi bináris keresőfán végrehajtjuk a BESZÚR(15) műveletet, akkor az eredményül kapott bináris kereső́ára melyik állítás igaz? (2019 jun) ==
[[Fájl:2019 jun info zv algo graf.jpg|keretnélküli]]
{{Kvízkérdés|típus=egy|válasz=2}}
# A 15 a gyökérben lesz.
# A fa magassága nem változik meg.
# A 15 egy olyan csúcsba kerül, ami gyereke a 12-es számot tartalmazónak.
# Az előzőek egyike sem igaz.
== Egy 200 csúcsú teljes páros gráfban az egyik oldalon a csúcsok 1-től 100-ig, a másik oldalon 101-től 200-ig vannak megszámozva. Hány olyan teljes párosítás található ebben a gráfban, amelyben minden páros csúcsnak páratlan, minden páratlannak pedig páros a szomszédja? (2019 jun) ==
{{Kvízkérdés|típus=egy|válasz=4}}
# <math>\frac{100 !}{2}</math>
# <math>\frac{100 !}{50 !}</math>
# <math>50 !+50 !</math>
# <math>50 ! \cdot 50</math> !
# Az előzőek egyike sem helyes.
== Egy 6 csúcsú irányítatlan gráfon mélységi bejárást végeztünk. Az alábbi táblázat tartalmazza a csúcsok mélységi és befejezési számait. (2019 jun) ==
{|
|-
|            || A || B || C || D || E || F
|-
| mélységi  || 4 || 3 || 2 || 5 || 1 || 6
|-
| szélességi || 4 || 1 || 5 || 2 || 6 || 3
|}
Melyik élről állíthatjuk biztosan, hogy nem lehet a gráfban?
{{Kvízkérdés|típus=egy|válasz=4}}
# <math>(B, E)</math>
# <math>(C, A)</math>
# <math>(C, D)</math>
# <math>(F, B)</math>
# A felsoroltak bármelyike előfordulhat.
== Hat kártya van elöttünk az asztalon, tudjuk, hogy mindegyiknek az egyik oldalán egy betủ, a másik oldalán egy szám van. A következőket látjuk: <math>A, B, C, 1,2,3</math>. (2019 jun) ==
Valaki azt állítja, hogy az is igaz, hogy minden mássalhangzó túloldalán páratlan szám szerepel. Ha minél kevesebb kártya megfordításával akarjuk ezt az állítást ellenőrizni, akkor melyik a jó módszer?
{{Kvízkérdés|típus=egy|válasz=4}}
# Mind a hat kártyát megfordítjuk.
# Csak a <math>B</math> kártyát fordítjuk meg.
# Csak a <math>B</math> és <math>C</math> kártyákat fordítjuk meg.
# Az elözőek egyike sem helyes.
== <math>\mathcal{A}: \quad \operatorname{Adott}</math> egy <math>G</math> irányítatlan gráf. (2019 jun) ==
Van-e <math>G</math>-ben kör?
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>\mathcal{A}</math> Benne van P-ben, de nincs benne NP-ben.
# <math>\mathcal{A}</math> Benne van NP-ben, de nincs benne P-ben.
# <math>\mathcal{A}</math> Benne van P-ben is és NP-ben is.
# <math>\mathcal{A}</math> Nincs benne P-ben se és NP-ben se.
== <math>\mathcal{B}: \quad</math> Adott egy <math>G</math> irányítatlan gráf. (2019 jun) ==
Van-e <math>G</math>-ben pontosan 2019 csúcsot tartalmazó kör?
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>\mathcal{B}</math> Benne van P-ben, de nincs benne NP-ben.
# <math>\mathcal{B}</math> Benne van NP-ben, de nincs benne P-ben.
# <math>\mathcal{B}</math> Benne van P-ben is és NP-ben is.
# <math>\mathcal{B}</math> Nincs benne P-ben se és NP-ben se.
== Tegyük fel, hogy <math>\mathrm{P} \neq</math> NP és jelölje <math>P_{1} \prec P_{2}</math> azt, hogy a <math>P_{1}</math> probléma Karp-redukálható (polinomiálisan visszavezethető) a <math>P_{2}</math> problémára. Tekintsük azt a két problémát, melyeknél adott egy <math>(G, k)</math> pár és  (2019 jun) ==
<math>\mathcal{A}</math> : a <math>G</math> élsúlyozott gráfban van-e legfeljebb <math>k</math> súlyú Hamilton-kör (2019 jun) ==
<math>\mathcal{B}</math> : a <math>G</math> gráfban van-e legalább <math>k</math> pontú teljes részgráf
Melyik állítás helyes az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=1}}
# <math>\mathcal{A} \prec \mathcal{B}</math> és <math>\mathcal{B} \prec \mathcal{A}</math>
# <math>\mathcal{A} \prec \mathcal{B}</math> és <math>\mathcal{B} \nprec \mathcal{A}</math>
# <math>\mathcal{A} \nprec \mathcal{B}</math> és <math>\mathcal{B} \prec \mathcal{A}</math>
# <math>\mathcal{A} \nprec \mathcal{B}</math> és <math>\mathcal{B} \nprec \mathcal{A}</math>
== Több különböző megbízás közül válogatunk, melyek mindegyikét adott napokon lehet elvégezni. Ha az <math>i</math>.ediket elvállaljuk, akkor a <math>k_{i}</math> naptól a <math>v_{i}</math> napig csak ezt csinálhatjuk. Legyen adott <math>n</math> megbízás a hozzájuk tartozó <math>k_{i}</math> és <math>v_{i}</math> dátumokkal. Azt akarjuk eldönteni, hogy elvállalható-e közülük legalább <math>n / 2</math> darab (mindegy, hogy melyikek). (2019 jun) ==
Melyik helyes az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=4}}
# Tetszőleges irányított gráfban legrövidebb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
# Tetszőleges irányított gráfban leghosszabb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
# Irányított körmentes gráfban legrövidebb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
# Irányított körmentes gráfban leghosszabb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
== Melyik feladat oldható meg <math>O(n)</math> lépésben? (2019 jun) ==
{{Kvízkérdés|típus=egy|válasz=3}}
# Tetszőleges <math>n</math> különböző szám növekvő sorrendbe rendezése.
# Annak ellenőrzése, hogy egy <math>n</math> csúcsú gráf összefüggő-e.
# Tetszőleges, <math>n</math> elemet tároló bináris keresőfa alapján a tárolt elemek növekvő sorrendben való felsorolása.
# Tetszőleges <math>n</math> elemből egy bináris keresőfa építése.
== Tekintsük a következő, az <math>a_{1}, a_{2}, \ldots, a_{n}</math> paraméterektől függő rekurzív definíciót! Az <math>(n+1) \times 1001</math> tömbben (2019 jun) ==
<math>T[i, 0]=1</math>  ha <math>0 \leq i \leq n</math>
<math>T[0, j]=0</math>  ha <math>1 \leq j \leq 1001</math>
<math>T[i, j]=T[i-1, j]</math>  ha <math>i \geq 1</math> és <math>j \le a_{i}</math>
<math>T[i, j]=\max \left\{T[i-1, j], T\left[i-1, j-a_{i}\right]\right\}</math>  ha <math>i \geq 1</math> és <math>j \geq a_{i}</math>.
Legyen <math>a_{i}=3^{i-1}, i=1,2, \ldots</math> Melyik igaz az alábbiak közül?
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>T[2,15]=1</math>
# <math>T[3,9]=0</math>
# <math>T[3,10]=1</math>
# <math>T[20,3]=0</math>
# Az előzőek egyike sem igaz.

A lap jelenlegi, 2023. december 14., 11:51-kori változata

ZVAlgo
Statisztika
Átlagteljesítmény
-
Eddigi kérdések
0
Kapott pontok
0
Alapbeállított pontozás
(-)
-
Beállítások
Minden kérdés látszik
-
Véletlenszerű sorrend
-
-


Tekintsük az alábbi két függvényt (itt a log függvény kettes alapú logaritmust jelöl): (2023 jun)

Az alábbiak közül melyik állítás igaz?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. , mert mindkét függvényre igaz, hogy
  2. , mert és
  3. , de az előző két indoklás egyike sem helyes

Egy bináris keresőfa preorder bejárása a csúcsokat sorrendben látogatja meg. (2023 jun)

Melyik igaz az alábbi állítások közül a keresőfára?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. A 7 a 12 egyik részfájában van.
  2. A 8 a gyökérben van.
  3. A 10 a 2 egyik részfájában van.
  4. A 2 egy levélbe n van.

darab különböző csokiból hányféleképpen tudunk kiválasztani darabot úgy, hogy a három kedvenc csokink a kiválasztottak között legyen? (2023 jun)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

Radix rendezéssel rendezzük az alábbi sorozatot: (a karakterek mindegyik pozícióban a 3-elemű ábécéből kerülnek ki). (2023 jun)

Melyik állítás igaz a rendezés folyamatára?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. soha nem előzi meg az szót.
  2. Van olyan fázis, amikor megelőzi az szót.
  3. és sorrendje pontosan kétszer változik.
  4. Van olyan fázis, amikor megelőzi az szót.

Kruskal algoritmusát futtatjuk az alábbi gráfon. (2023 jun)

Melyik állítás igaz az alábbiak közül?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Ha akkor az élet biztosan nem választja be az algoritmus a minimális feszítőfába.
  2. Az élet biztosan beválasztja az algoritmus a minimális feszítőfába, bármi is értéke.
  3. Az élet biztosan nem választja be az algoritmus a minimális feszítőfába, bármi is értéke.
  4. Az algoritmus biztosan beválaszt legalább egy 3 súlyú élet a minimális feszítőfába.

Az csúcsú irányítatlan gráfra igaz, hogy bárhogyan is sorolunk fel csupa különböző -beli csúcsokat, ahol a és párok közül legalább az egyik benne van élhalmazában. Melyik állítás igaz az alábbiak közül? (2023 jun)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. komplementerében nincsen kör.
  2. -ben van kör.
  3. -ben nincsen méretű független ponthalmaz.
  4. komplementerében nincsen -as klikk.

Egy ország térképe egy élsúlyozott, irányítatlan csúcsú gráf szomszédossági mátrixával adott. A csomópontok a városok, az élek a városok között vezető közvetlen utak, egy él súlya a megfelelő útszakasz hosszát adja meg kilométerben. (2023 jun)

A városok közül néhányban van csak posta. Egy adott érték esetén azt szeretnénk eldönteni, hogy igaz-e, hogy bármelyik településről van kilométeren belül elérhető, postával rendelkező város (az eléréshez csak az úthálózatot használhatjuk). Az alábbi lehetőségek közül melyikkel lehet ezt eldönteni lépésben?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Felveszünk egy új csúcsot, ebből 0 súlyú élet vezetünk minden postás városhoz, majd szélességi bejárást (BFS) futtatunk az új csúcsból a legrövidebb utak megkeresésére.
  2. Minden csúcsból futtatunk egy szélességi bejárást (BFS) a legrövidebb utak megkeresésésére.
  3. Minden csúcsból lefuttatjuk Dijktsra algoritmusát a legrövidebb utak megkeresésére.
  4. Felveszünk egy új csúcsot, ebből 0 súlyú élet vezetünk minden postás városhoz, majd futtatjuk Dijkstra algoritmusát az új csúcsból a legrövidebb utak megkeresésére.

Eldöntési feladatok (2023 jun)

Az eldöntési feladatban egy irányítatlan gráfról azt szeretnénk eldönteni, hogy van-e -ben pontosan 4 élü kör. Az eldöntési feladatban egy irányítatlan gráfról és egy pozitív egész számról azt szeretnénk eldönteni, hogy van-e -ben pontosan élü kör. Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy  ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. és
  2. és
  3. de
  4. de

Az eldöntési problémáról azt tudjuk, hogy -ben van, az eldöntési problémáról pedig azt, hogy -teljes. (2023 jun)

Mi igaz az alábbiak közül, ha feltételezzük, hogy  ?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Minden olyan eldöntési probléma, ami Karp-redukálható -ra, az Karp-redukálható -re is.
  2. biztosan Karp-redukálható -re.
  3. Ha Karp-redukálható -ra, akkor nincsen -ben.
  4. Ha Karp-redukálható -re, akkor az probléma -teljes.

Adott egy egész számokat tartalmazó tömb, melyben nem szerepel 0. (2023 jun)

Az tömb alapján egy és egy tömböt töltünk ki a következőképpen:

  • ha akkor és .
  • ha akkor és

A további értékeket így számoljuk:

  • ha akkor és
  • ha akkor és

Melyik állítás igaz az alábbiak közül a kiszámolt és értékek jelentésére?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. megadja a legnagyobb összeget, amit valamelyik, legfeljebb egy negatív számot tartalmazó résztömbből ( kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
  2. megadja a legnagyobb összeget, amit valamelyik résztömbből kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
  3. megadja az tömbben szereplö összes negatív szám összegét
  4. megadja az tömbben szereplö összes szám összegét

Egy irányítatlan nyolc csúcsú gráfon BFS-t (szélességi bejárást) futtatunk úgy, hogy ha döntési helyzetben vagyunk, akkor az ábécé szerinti sorrend szerint haladunk. A BFS fába az alábbi élek kerülnek be ebben a sorrendben: . (2023 jan)

Melyik csúcs lehet szomszédja az csúcsnak a gráfban?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. A
  2. B
  3. C
  4. E

Tekintsük az alábbi három függvényt (itt a log függvény kettes alapú logaritmust jelöl): (2023 jan)

Az alábbiak közül melyik állitás igaz ezen három függvény nagyságrendjére?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

Az alábbi lehetőségek közül melyik az a változtatás, amit ha végrehajtunk a 10,5,7,6,2, 3 számsorozaton, akkor van olyan bináris keresőfa, amiben egy keresés során láthatjuk a kapott új sorozat elemeit ebben a sorrendben? (2023 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. 2 helyett álljon 4
  2. 7 helyett álljon 8
  3. 5 helyett álljon 1
  4. 10 helyett álljon 1

Egy és egy hosszú rendezett tömböt fésülünk össze a tanult összefésülés eljárással. Maximum mennyi összehasonlítás történhet eközben? (2023 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

Egy csupa különböző egész számot tartalmazó tömbben akarjuk eldönteni egy adott elemről, hogy igaz-e, hogy és is szerepel -ben. Az alábbi négy állítás közül melyek igazak? (2023 jan)

A: Ez megtehető lépésben, ha a tömb rendezett.

B: Ez megtehető lépésben, ha a tömb rendezett.

C: Ez megtehető lépésben tetszőleges tömb esetén.

D: Ez megtehető lépésben tetszőleges tömb esetén.

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Csak az állítások igazak.
  2. Csak az állítások igazak.
  3. Mind a négy igaz.
  4. Csak az állítások igazak.

Egy országban a rendszámok hét karakterből állnak, az első négy karakter egy 26 elemú ábécéből kerül ki, az utolsó három karakter pedig a halmazból. További megkötés nincs a rendszámokra. (2023 jan)

Hány olyan rendszám van, ahol az első két betû megegyezik és a három számjegyből a középső a 0 ?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

Adott egy 200 elemű tömb, amiben minden esetén, minden egyéb esetben (azaz amikor az index nem többszöröse a 3-nak) pedig . (2023 jan)

Definiáljuk az tömböt a következőképpen:

és esetén .

Mennyi értéke?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. 1
  2. 0

Az előző feladat folytatása: Mi igaz az alábbiak közül a kitöltött tömb elemeire?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. teljesül legalább 50 esetben
  2. teljesül legalább 50 esetben
  3. teljesül legalább 50 esetben
  4. a legnagyobb érték az tömbben.


Egy ország térképe egy élsúlyozott, irányítatlan gráf szomszédossági mátrixával adott. A csomópontok a városok, az élek a városok között vezető közvetlen utak, az élek súlya pedig azt adja meg, hogy az autónk az adott útszakaszon hány liter benzint fogyaszt. (2023 jan)

Adott egy csomópont, ahol éppen tartózkodunk és tudjuk hogy liter benzinünk van. Melyik tanult algoritmussal lehet meghatározni, hogy az ország mely városaiba tudunk eljutni tankolás nélkül?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. BFS-t, azaz szélességi bejárást kell futtatni az csúcsból.
  2. Kruskal algoritmust kell futtatni a gráfon.
  3. DFS-t, azaz mélységi bejárást kell futtatni az csúcsból.
  4. Dijkstra algoritmust kell futtatni az csúcsból.

Legyen az az eldöntési probléma, melynek inputja egy irányított gráfból, ezen gráf egy csúcsából és egy pozitív egészből áll és azt szeretnénk eldönteni, hogy igaz-e hogy -ben -ből minden más csúcsba vezet legfeljebb élből álló út. Legyen továbbá a tanult IíN eldöntési feladat. (2023 jan)

Mi igaz az alábbiak közül, ha feltételezzük, hogy  ?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. sem Karp-redukálható -ra és sem Karp-redukálható -re.
  2. Karp-redukálható -ra, de nem Karp-redukálható -re.
  3. Karp-redukálható -ra és is Karp-redukálható -re.
  4. nem Karp-redukálható -ra, de Karp-redukálható -re.

Tekintsük azt az eldöntési feladatot, ahol egy irányítatlan gráfról azt szeretnénk eldönteni, hogy hozzá lehet-e adni legfeljebb 5 élet -hez úgy, hogy a keletkező gráfban legyen 100 pontú teljes részgráf. (Új csúcsot nem adunk hozzá a gráfhoz, csak éleket húzunk be a már meglevő csúcsok közé.) (2023 jan)

Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy  ?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. A probléma -ben van, de nincs -ben.
  2. A probléma -teljes és nincs -ben.
  3. A probléma -ben van és -teljes.
  4. A probléma -ben és -ben is benne van.

Pozitív egész számokat szeretnénk tárolni valami adatszerkezet segítségével úgy, hogy tárolt elem esetén tetszőleges egész számról lépésben meg tudjuk mondani, hogy igaz-e rá, hogy a tárolt számok között van, de sem , sem nincsen. (2022 jun)

Melyik adatszerkezettel valósítható ez meg?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. 2-3 fa
  2. rendezett lista
  3. nyílt címzésú hash
  4. (nem feltétlenül kiegyensúlyozott) bináris keresőfa

Az 1, 8, 10,12, 20, 27, 30 rendezett tömbben bináris kereséssel keressük a 30-at. Hány összehasonlítás után találjuk meg? (2022 jun)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. 2
  2. 1
  3. 7
  4. 3

Egy kezdetben üres bináris keresőfába szúrtunk be elemeket (törlés nem volt). Az alábbiak közül melyik beszúrási sorrend eredményezi az ábrán látható fát? (2022 jun)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.


Tekintsük azt a feladatot, ahol egy csúcsú irányított gráfról azt szeretnénk eldönteni, hogy van-e 100 olyan csúcsa, hogy a gráfból ezeket elhagyva a maradék gráf csupa izolált pontból áll. (2022 jun)

Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy  ?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. A probléma -ben van, de nincs -ben.
  2. A probléma -teljes és nincs -ben.
  3. A probléma -ben van és -teljes.
  4. A probléma -ben és -ben is benne van.


A megadottak közül melyik egy topologikus sorrendje az ábrán látható gráfnak? (2022 jun)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.


Egy -es táblázat mezőin akarunk eljutni a bal felső cellából az utolsó sorba (itt mindegy, hogy a soron belül melyik oszlopba érkezünk). (2022 jun)

A szabályok a következők:

  1. Az első oszlop első mezőjéről kell indulnunk és a végén az utolsó sor tetszőleges mezőjére kell érkeznünk.
  2. Egy lépésben vagy egy cellát mehetünk lefele (és maradunk ugyanabban az oszlopban) vagy egy cellát megyünk jobbra (és maradunk ugyanabban a sorban) vagy átlósan lépünk egyet lefele jobbra (azaz egy sort lefele és egy oszlopnyit jobbra).

Jelölje esetén) azt, hogy az -edik sor -edik oszlopában levő mezőbe hányféleképpen juthatok el a bal felső cellából. Inicializáljuk a kezdeti értékeket így: mivel az első sor minden cellájába egyféleképpen juthatunk, ezért minden esetén és hasonlóan, mivel az első oszlop minden cellájába is egy út vezet, ezért minden esetén. Melyik rekurziós képlet a helyes a többi érték meghatározására?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

Az előző feladat folytatása:

A teljesen kitöltött táblázat segítségével hogyan kaphatjuk meg azt, hogy hányféleképpen lehet eljutni a bal felső cellából a legalsó sorba?

Típus: egy. Válasz: 5. Pontozás: nincs megadva.

  1. adja meg ezt.
  2. adja meg ezt.
  3. adja meg ezt.
  4. adja meg ezt
  5. adja meg ezt.

A egyszerű, irányítatlan gráf élei súlyozottak. Tegyük fel, hogy az élek súlyai különbözőek és hogy van legalább három éle a gráfnak. (2022 jun)

Tekintsük a következő állításokat: A: minden minimális feszítőfája tartalmazza a legkisebb súlyú élt. B: minden minimális feszítőfája tartalmazza a második legkisebb súlyú élt. C: egyik minimális feszítőfája sem tartalmazza a legnagyobb súlyú élt. Melyik a helyes az alábbi lehetőségek közül?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Csak az állítás igaz, a másik kettő nem
  2. Az , a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B} és a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C} állítás is igaz.
  3. Csak az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A} és a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B} állítás igaz, a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C} nem.
  4. Csak az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A} és a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C} állítás igaz, a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B} nem.

Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2SZÍN} eldöntési probléma, azaz ahol egy egyszerü, irányítatlan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} gráfról azt szeretnénk eldönteni, hogy ki lehet-e színezni a csúcsait két színnel úgy, hogy azonos színú csúcsok közőtt ne menjen él. Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} eldöntési problémában pedig azt kell eldöntenünk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} darab pozitív egész számról, hogy van-e ezeknek a számoknak egy olyan részhalmaza, hogy a részhalmazban levő számok összege megegyezik a részhalmazba be nem vett számok összegével. (2022 jun)

Mi igaz az alábbiak közül, ha feltételezzük, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P \neq N P}  ?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} nem Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} -ra, de Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -re.
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} -ra és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} is Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -re.
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} sem Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} -ra és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} sem Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -re.
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} -ra, de Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} nem Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -re.

Tekintsük azt a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K_{20,40}} teljes páros gráfot, melynek Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A=\left\{a_{1}, a_{2}, \ldots, a_{20}\right\}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B=\left\{b_{1}, b_{2}, \ldots, b_{40}\right\}} a két osztálya. Hány maximális (azaz tovább nem bővíthető) párosítás van ebben a gráfban? (Két párosítás különböző, ha nem pontosan ugyanazokból az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left(a_{i}, b_{j}\right)} élekből áll.) (2022 jun)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left(\begin{array}{l}40 \\ 20\end{array}\right) \cdot 20}  !
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left(\begin{array}{l}40 \\ 20\end{array}\right)}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 40^{20}}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 40!}

Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} tömböt rendezzük a szokásos (módosítás nélkül futtatott) öszefésüléses rendezéssel. Hány összehasonlítás történik a rendezés teljes futása alatt? (2022 jun)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. 0
  2. 64
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left(\begin{array}{c}16 \\ 2\end{array}\right)}
  4. 32

Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} algoritmusról tudjuk, hogy lépésszáma a bemenet hosszának, Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} -nek a függvényében Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{2}\right)} . (2022 jun)

Melyik nem igaz az alábbiak közül?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} pozitív számhoz lehet olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} hosszú bemenet, amelyiken Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} lépésszáma kisebb, mint Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n^{3}} .
  2. Minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} pozitív számhoz lehet olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} hosszú bemenet, amelyiken Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} lépésszáma nagyobb, mint Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n^{3}} .
  3. Minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} pozitív számhoz lehet olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} hosszú bemenet, amelyiken Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} lépésszáma kisebb, mint Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} .
  4. Minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} pozitív számhoz lehet olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} hosszú bemenet, amelyiken Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} lépésszáma nagyobb, mint Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} .

Egy csupa különböző egész számot tartalmazó bináris keresőfában egy keresés során az alábbi értékeket látjuk (x értéke nem ismert): Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 10, 5, x, 7, 8} . Az alábbiak közül mi igaz x értékére? (2022 jan)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. x lehet 1 is és 9 is
  2. x lehet 6 is és 9 is
  3. x lehet 1 is és 6 is
  4. x lehet 2 is és 12 is

Egy kezdetben üres bináris keresőfába beszúrtuk az egész számokat valamilyen sorrendben (a sorrend nem ismert). Mi igaz biztosan az alábbiak közül? (2022 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Az 1 levélben van.
  2. A fának 7 szintje van.
  3. A legutoljára beszúrt érték levélben van.
  4. A középső érték, azaz a 64, a gyökérben van.

Egy irányítatlan nyolc csúcsú gráfon DFS-t (mélységi bejárást) futtatunk úgy, hogy ha döntési helyzetben vagyunk, akkor az ábécé szerinti sorrend szerint haladunk. A DFS fába az alábbi élek kerülnek be ebben a sorrendben: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle AB, BD, AF, FE, EC, FG, GH} . Mi igaz a csúcs fokszámára az alábbiak közül? (2022 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H} fokszáma lehet 1 vagy 2, és más nem lehet
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H} fokszáma lehet 1, 2, 3 vagy 4, és más nem lehet
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H} fokszáma lehet 1, 2 vagy 3, és más nem lehet
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H} fokszáma lehet 1, 2, 3, 4 vagy 5, és más nem lehet

Adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 3n} csúcsú teljes gráf, a csúcsok számozottak, az 1, 2,…, n számozású csúcsok pirosra vannak színezve, a többi csúcs színtelen. Hány olyan különböző Hamilton-út van a gráfban, amelyben az első n csúcs piros? (2022 jan)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{n!}{2} * n!}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n! * n! * n!}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 * n! * n!}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n! * (2n)!}

A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 4, 3, 2, 1, 5, 6, 7, 8} tömböt rendezzük öszefésüléses rendezéssel. Hány összehasonlítás történik a rendezés teljes futása alatt? (2022 jan)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. 12
  2. 7
  3. 4
  4. 8

Radix rendezéssel rendezünk 5 hosszú karaktersorozatokat, ahol a karakterek mindegyik pozícióban a 4-elemű Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \{a,b,c,d\}} ábécéből kerülnek ki. Mi igaz ekkor a radix rendezés során használt ládarendezésekre? (2022 jan)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. 1 ládarendezést használunk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 4^5} ládával.
  2. 5 ládarendezést használunk, mindegyik esetben 4 ládával.
  3. 4 ládarendezést használunk, mindegyik esetben 5 ládával.
  4. 1 ládarendezést használunk 20 ládával.

Tekintsük az alábbi három függvényt (itt a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle log} függvény mindig kettes alapú logaritmust jelöl): (2022 jan)

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n)=2022 \cdot n^2 \cdot \log n+7 \cdot \sqrt{n}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle g(n)=\log n+1000+n \cdot(\log n)^2}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h(n)=n \cdot \sqrt{n}+\frac{1}{1000} \cdot n^2-8}

Az alábbiak közül melyik állítás igaz ezen három függvény nagyságrendjére?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n) \notin O(h(n))} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle g(n) \in O(h(n))}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n) \in O(h(n))} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle g(n) \notin O(h(n))}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n) \in O(h(n))} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle g(n) \in O(h(n))}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n) \notin O(h(n))} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle g(n) \notin O(h(n))}

Tekintsük azt az eldöntési feladatot, ahol egy irányított Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} gráfról azt szeretnénk eldönteni, hogy van-e két olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t} csúcsa, hogy -ből van irányított út -be, de -ből nincsen irányított út -be (2022 jan)

Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy  ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. A probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P} -ben és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle NP} -ben is benne van.
  2. A probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P} -ben van, de nincs Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle NP} -ben.
  3. A probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle NP} -teljes és nincs Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P} -ben.
  4. A probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P} -ben van és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle NP} -teljes.

Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} az az eldöntési probléma, ahol egy irányítatlan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} páros gráfról és egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} számról azt szeretnénk eldönteni, hogy van-e Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} -ben Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} élű párosítás és legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} az a kérdés, ahol egy irányítatlan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} gráfról és egy számról azt szeretnénk eldönteni, hogy van-e Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} -ben Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} pontból álló klikk (azaz teljes gráf). (2022 jan)

Mi igaz az alábbiak közül, ha feltételezzük, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P \neq NP}  ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} -ra, de Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} nem Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -re.
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} nem Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} -ra, de Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -re.
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} -ra és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} is Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -re.
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} sem Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} -ra és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y} sem Karp-redukálható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -re.

A hátizsák feladatra tanult dinamikus programozást használó algoritmust futtatjuk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C = 10} -es hátizsák kapacitással. A táblázat Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i = 7} -es sora az értékekkel így néz ki: (2022 jan)

X 0 1 2 3 4 5 6 7 8 9 10
7 0 0 7 7 8 12 12 12 12 20 20

Mi igaz a következő, Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i = 8} -as sor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V[8,b]} értékeire az alábbiak közül, ha a 8. tárgy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle w_8} súlya Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 5} , Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v_8} értéke pedig Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 6}  ? ( Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V[i,b]} jelentése: az első Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i} tárgyból Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b} hátizsák kapacitás mellett elérhető maximális érték.)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V[8,4]=8 \text { és } V[8,9]=17}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V[8,3]=7 \text { és } V[8,8]=13}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V[8,4]=8 \text { és } V[8,8]=12}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V[8,4]=5 \text { és } V[8,8]=12}

Az alábbi állítások közül pontosan egy hamis. Válassza ki a HAMIS állítást! (2021 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Előfordulhat, hogy egy bináris keresőfában végrehajtott keresés belső csúcsban (azaz nem levélben) ér véget.
  2. Bináris keresőfában a legkisebb értéket tartalmazó csúcsnak legfeljebb egy gyereke lehet.
  3. Bináris keresőfában a tárolt értékek közül a középsőt 1 lépésben meg lehet találni, mert az mindig a gyökérben van.
  4. Piros-fekete fában a legkisebb értéket tartalmazó csúcsnak legfeljebb egy gyereke lehet.

Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G(V, E)} egy egyszerú, irányítatlan gráf. Tekintsük a következő tulajdonságot: (2021 jan)

Vannak olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X \subseteq V} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y \subseteq V} nemüres halmazok, melyekre igaz, hogy

  • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X \cap Y=\emptyset}
  • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X \cup Y=V}
  • bármely Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \{u, v\} \in E} él esetén az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \{u, v\} \cap X} halmaz egy elemú.

Az alábbiak közül melyik írja le pontosan a megadott tulajdonságú gráfokat?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Nincsen egyetlen éle sem a gráfnak.
  2. A gráf páros gráf, de nem feltétlenül teljes páros gráf
  3. A gráf teljes páros gráf
  4. A gráf teljes gráf.
  5. A gráfban van teljes párosítás

Az alábbi bináris keresőfa csúcsait a posztorder és a preorder bejárás szerinti sorrendben is kiírjuk. (2021 jan)

Melyik álítás igaz?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. A 3 előbb jön, mint a 27 mindkét sorrendben.
  2. A 15 megelőzi a 4-et a preorder sorrendben, mert a 15 belső csúcsban van, a 4 pedig levélben.
  3. A 27 megelőzi a 9-et a posztorder sorrendben, mert a 27 levélben van, a 9 pedig belső csúcsban.
  4. A számok növekvő sorrendben vannak a két sorrend egyike szerint.
  5. A 3 után közvetlenül a 4 következik a két sorrend valamelyikében.

Melyik állítás igaz az alábbi négy függvény nagyságrendjére? (2021 jan)

(a) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 100 \cdot \frac{n(n-1)}{n-2} \cdot \log _{2} n+17 n-32}

(b) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 \cdot n^{2} \cdot \sqrt{n}+44 n^{2}+13}

(c) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{10^{10}} \cdot \frac{4^{n}}{2^{n}}}

(d) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 4 n^{2}+37 n-12}

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Az (a) függvény Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(2^{n}\right)} , a (b) függvény Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{2}\right)}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathrm{Az}} (a) és a (d) függvény is Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{2}\right)}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathrm{Az}} (b) függvény Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{n}\right)} , a (c) függvény Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{2}\right)}
  4. A négy függvény közül csak a (d) függvény Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{2}\right)}
  5. A (b), a (c) és a (d) függvény is Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{2}\right)}

Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} elemú véges halmaz, Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n>0} . Hány páratlan elemú részhalmaza van Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X} -nek? (2021 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2^{\lfloor n / 2\rfloor}}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2^{n-1}}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2^{n}}
  5. Más a formula attól függően, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} páros vagy páratlan.

Egy város úthálózatát a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} egyszerú, irányítatlan, összefüggő gráf írja le, a gráf csúcsai a csomópontok, az élek az ezeket összekötőútszakaszokat jelölik. (2021 jan)

Az utak sajnos eléggé rossz állapotúak, minden élre adott, hogy azt az útszakaszt mennyiért lehetne felújítani. A város vezetése azt szeretné megtudni, hogy mely útszakaszokat újitassa fel, ha a célja az, hogy a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v} csúccsal jelzett főtérről mindencsomópontba el lehessen jutni kizárólag felújított útszakaszokon. A következő ötletek merültek fel a legolcsóbb ilyen felújitás megtalálására: A: Dijkstra algoritmusával határozzák meg a legrövidebb utakat Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v} -ből az összes többi csúcsba. B: A Bellman-Ford-algoritmussal határozzák meg a legrövidebb utakat Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v} -ből az összes többi csúcsba. C: Kruskal algoritmusával határozzanak meg egy minimális feszítófát a gráfban. Melyik ad helyes eredményt a feladatra?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Csak az A módszer.
  2. Csak a B módszer.
  3. Csak a C módszer
  4. Csak az A és a B módszer.
  5. Mindhárom módszer

Tudjuk, hogy az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle N P} -teljes, a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}} probléma pedig Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle N P} -beli, de nem feltétlenül Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle N P} -teljes. (2021 jan)

Tekintsük a következő álításokat:

A: Ha az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} problémára van polinom idejü algoritmus, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P=N P} .

B: Ha a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}} problémára van polinom idejú algoritmus, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P=N P} .

C: Ha az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} problémára van polinom idejú algoritmus, akkor a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}} problémára is van polinom idejú algoritmus.

Melyik helyes az alábbiak közül?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Csak az A és a C igaz.
  2. Csak az A igaz.
  3. Az A, B, C mindegyike igaz.
  4. Csak a B igaz.
  5. Csak az A és a B igaz.

Adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} hosszú számsorozat, . (2021 jan)

Definiáljuk a és tömböt a következőképpen:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[0]=S[0]=0, T[1]=a_{1}}

és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 \le i \leq n} esetén:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[i]=\max _{j \le i-1}\left\{T[j]+a_{i}\right\}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle S[i]=\max _{j \leq i}\{T[j]\}}

Legyen most a számsorozat olyan, hogy ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i} hárommal osztható, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_{i}=3} , különben meg Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_{i}=1} .

Az alábbiak közül melyik állítás helyes?

Típus: egy. Válasz: 5. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[10]=10}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[4]=4}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle S[10]=9}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle S[3 n]=3 n}
  5. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[36]=37}

Adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} tárgy, tudjuk, hogy az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i} -ediknek a súlya Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s_{i}} kilogramm, az értéke Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v_{i}} forint, az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s_{i}, v_{i}} számok pozitív egészek. (2021 jan)

Azt szeretnénk eldönteni, hogy ki lehet-e közülük választani néhányat úgy, hogy ezek berakhatók legyenek egy összesen 100 kg teherbírású zsákba, és a kiválasztott tárgyak értékeinek összege legalább 2021 Ft legyen. Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P \neq N P} ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. A probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P} -ben és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle N P} -ben is benne van.
  2. A probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P} -ben van és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle N P} -teljes.
  3. A probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle N P} -teljes és nincs Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P} -ben.
  4. A probléma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P} -ben van, de nincs Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle N P} -ben.

Nézzük a következő két problémát: (2021 jan)

Legközelebbi pár: Adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} szám egy rendezetlen tömbben. Határozzuk meg, hogy melyik két elem értéke van legközelebb egymáshoz. Legtávolabbi pár: Adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} szám egy rendezetlen tömbben. Határozzuk meg, hogy melyik két elem értéke van legtávolabb egymástól. A megengedett lépések legyenek: két elem összehasonlítása, két elem távolságának (azaz különbségének) a meghatározása, két elemcseréje a tömbben.

Tekintsük a követkető állításokat:

A: A Legközelebbi pár feladat megoldható a cseréken túl Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n \log n)} lépésben.

B: A Legközelebbi pár feladat megoldható a cseréken túl Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{2}\right)} lépésben.

C: A Legtávolabbi pár feladat megoldható a cseréken túl Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n)} lépésben.

D: A Legtávolabbi pár feladat megoldható a cseréken túl Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n \log n)} lépésben.

Melyik helyes az alábbiak közül?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Csak az A.
  2. Mind a négy igaz.
  3. Csak az A, a B és a D.
  4. Csak a B és a D.

Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n)} függvényről azt tudjuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n) \in O\left(n^{2}\right)} Az alábbiak közül melyik lehet Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f}  ? (Mindegyik logaritmus kettes alapú.) (2020 jan)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n)=3 \cdot 2^{(\log n)^{2}}+85 n^{2}}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n)=10 \cdot n \log n+12 n^{1,5}-8}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n)=3 n \log (n !)}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n)=20 \cdot \frac{n^{3}}{\log n}-15 n^{2}}
  5. Egyik sem lehet.

A kezdetben üres, Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle M=17} méretü Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A} hash-táblába a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h(x) \equiv x(\bmod 17)} hash-függvényt és lineáris próbát használva beraktunk 9 elemet, majd kitöröltük az egyiket. Ha tudjuk, hogy a törlés után a nem üres mezők tartalma (2020 jan)

A[3]=4, \quad A[4]=22, \quad A[5]=5, \quad A[7]=44, \quad A[9]=26, \quad A[10]=11, \quad A[11]=28, \quad A[16]=33,

akkor hol volt a törölt elem?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A[8]} -ban
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A[6]} -ban
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A[9]} -ben
  4. Nem határozható meg.
  5. Az elözőek egyike sem helyes.

Az angol ábécé 26 betűjéből és a 10 számjegyből hány olyan 8 hosszú sorozat készíthető, melyben sem két betü, sem két számjegy nem állhat egymás mellett? (Egy betü vagy számjegy többször is használható.) (2020 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 26 \cdot 25 \cdot 24 \cdot 23 \cdot 10 \cdot 9 \cdot 8 \cdot 7}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 \cdot\left[\left(\begin{array}{c}26 \\ 4\end{array}\right)+\left(\begin{array}{c}10 \\ 4\end{array}\right)\right]}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 \cdot 26^{4} \cdot 10^{4}}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 26 \cdot 25 \cdot 24 \cdot 23+10 \cdot 9 \cdot 8 \cdot 7}
  5. Az előzőek egyike sem helyes.

Az alábbi gráfon a Kruskal-algoritmust használtuk minimális feszítőfa keresésre. Azt tapasztaltuk, hogy az algoritmus által kiválasztott első 3 él sorrendben a következő: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle E C, D B, D E} A felsorolt lehetőségek közül melyik lehet igaz az ismeretlen élsúlyokra? (2020 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x=1, y=5}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x=5, y=1}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x=y}
  4. A fentiek egyike sem lehetséges.

A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G=(V, E)} egyszerủ, irányítatlan gráf csúcsain adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f: V \rightarrow\{0,1,2\}} függvény. Melyik feltétel írja le azt, hogy ez a függvény a gráfnak egy szabályos 3 színnel való színezése? (2020 jan)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a, b \in V} párra, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a \neq b} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(a) \neq f(b)}
  2. Minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a, b \in V} párra, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \{a, b\} \in E} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(a) \neq f(b)}
  3. Minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a, b \in V} párra, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(a) \neq f(b)} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \{a, b\} \in E}
  4. Minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a, b \in V} párra, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \{a, b\} \notin E} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(a)=f(b)}

Tegyük fel, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathrm{P} \neq \mathrm{NP}} Tekintsük azt a problémát, amikor adottak az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_{1}, a_{2}, \ldots, a_{n}} pozitív egész számok, és azt kell eldönteni, hogy van-e olyan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I \subseteq\{1,2, \ldots, n\}} , melyre Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sum_{i \in I} a_{i}=2020} (2020 jan)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

Melyik állítás igaz az alábbiak közül?

  1. A probléma P-ben és NP-ben is benne van.
  2. A probléma P-ben van, de nincs NP-ben.
  3. A probléma P-ben van és NP-teljes.
  4. A probléma NP-teljes és nincs P-ben.

Tegyük fel, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathrm{P} \neq \mathrm{NP}} és jelölje Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_{1} \prec P_{2}} azt, hogy a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_{1}} probléma Karp-redukálható (polinomiálisan visszavezethető) a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_{2}} problémára. Tekintsük az alábbi három problémát. (2020 jan)

Adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (G, k)} pár, ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} egy irányítatlan gráf, Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} egy pozitív egész és a kérdés az alábbi:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}}  : a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} gráfban van-e legalább Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} pontból álló kör

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}}  : a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} gráfban van-e legfeljebb Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} pontból álló kör

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{C}}  : a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} gráfban van-e pontosan Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} pontból álló kör

Melyik állítás helyes az alábbiak közül?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{C} \prec \mathcal{A}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{C} \prec \mathcal{B}}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A} \prec \mathcal{C}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A} \prec \mathcal{B}}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B} \prec \mathcal{C}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{C} \prec \mathcal{A}}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A} \prec \mathcal{B}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B} \prec \mathcal{C}}

Legyen adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} gráf, melynek adott két különböző csúcsa Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A} és Ez a két csúcs színtelen, a többi csúcs mindegyike vagy pirosra vagy kékre van színezve. (Szomszédos csúcsok lehetnek azonos színüek is.) Meg szeretnénk határozni a legkevesebb élú olyan utat Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A} -ból Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B} -be, ami csupa azonos színü csúcson megy át. Ehhez egy ismert algoritmust akarunk használni, akár többször is futtatva az alkalmas bemeneteken. (2020 jan)

Melyik helyes az alábbiak közül?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Irányított gráf esetében a Dijkstra-algoritmus segítségével a feladat megoldható, de szélességi kereséssel nem.
  2. Irányított gráf esetében a Dijkstra-algoritmus segítségével és szélességi kereséssel is megoldható a feladat.
  3. Irányítatlan gráf esetében sem a Dijkstra-algoritmus segítségével, sem szélességi bejárással nem oldható meg a feladat.
  4. Irányított és irányítatlan gráf esetében sem oldható meg a feladat a Dijkstra-algoritmus segítségével, de szélességi kereséssel mindig megoldható.

Melyik feladatra nem ismert Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O\left(n^{2}\right)} lépésben müködő algoritmus? (2020 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Adott különböző egész szám közül a legkisebb kiválasztása.
  2. Adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} csúcsú bináris keresőfában tárolt elemek közül a legnagyobb meghatározása.
  3. Adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} bites Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} egész számra Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 5^{k}} kiszámolása.
  4. Adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} csúcsú, irányított, körmentes gráfban az adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s} csúcsból az adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t} csúcsba vezető legkevesebb élü út meghatározása.

Egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} hosszú Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s=s_{1} s_{2} \cdots s_{n}} és egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m} hosszú Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t=t_{1} t_{2} \cdots t_{m}} sorozathoz a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T} tömböt definiáljuk a következőképpen: Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[0, j]=T[i, 0]=0} minden Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 \leq i \leq n} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 \leq j \leq m} estén, továbbá Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[0,0]=0} Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 \leq i \leq n} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 \leq j \leq m} esetekben pedig (2020 jan)

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[i, j]= \begin{cases}\max \{T[i, j-1], T[i-1, j], T[i-1, j-1]+1\} & \text { ha } s_{i}=t_{j} \\ \max \{T[i, j-1], T[i-1, j]\} & \text { ha } s_{i} \neq t_{j}\end{cases}}

Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n=100, m=20} , az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s} az a 0 -val kezdődő sorozat, melyben az 1-ek és 0-k felváltva követik egymást, azaz Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s=010101 \cdots 01} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle t} az a sorozat, melynek első tíz eleme 0 , a második tíz pedig 1 . Az alábbiak közül melyik állítás helyes?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[1,10]=15}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[2,20]=2}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[100,15]=10}
  4. Az előzőek egyike sem igaz.

Melyik az a legkisebb pozitív egész Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle d} szám, melyre Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n) \in O\left(n^{d}\right)} teljesül, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(n)=\sum_{k=1}^{n^{2}} \frac{k}{3}} ? (2019 jun)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. 2
  2. 3
  3. 4
  4. 5
  5. nincs ilyen d

Ha az alábbi bináris keresőfán végrehajtjuk a BESZÚR(15) műveletet, akkor az eredményül kapott bináris kereső́ára melyik állítás igaz? (2019 jun)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. A 15 a gyökérben lesz.
  2. A fa magassága nem változik meg.
  3. A 15 egy olyan csúcsba kerül, ami gyereke a 12-es számot tartalmazónak.
  4. Az előzőek egyike sem igaz.

Egy 200 csúcsú teljes páros gráfban az egyik oldalon a csúcsok 1-től 100-ig, a másik oldalon 101-től 200-ig vannak megszámozva. Hány olyan teljes párosítás található ebben a gráfban, amelyben minden páros csúcsnak páratlan, minden páratlannak pedig páros a szomszédja? (2019 jun)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{100 !}{2}}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{100 !}{50 !}}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 50 !+50 !}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 50 ! \cdot 50}  !
  5. Az előzőek egyike sem helyes.

Egy 6 csúcsú irányítatlan gráfon mélységi bejárást végeztünk. Az alábbi táblázat tartalmazza a csúcsok mélységi és befejezési számait. (2019 jun)

A B C D E F
mélységi 4 3 2 5 1 6
szélességi 4 1 5 2 6 3

Melyik élről állíthatjuk biztosan, hogy nem lehet a gráfban?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (B, E)}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (C, A)}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (C, D)}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (F, B)}
  5. A felsoroltak bármelyike előfordulhat.

Hat kártya van elöttünk az asztalon, tudjuk, hogy mindegyiknek az egyik oldalán egy betủ, a másik oldalán egy szám van. A következőket látjuk: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A, B, C, 1,2,3} . (2019 jun)

Valaki azt állítja, hogy az is igaz, hogy minden mássalhangzó túloldalán páratlan szám szerepel. Ha minél kevesebb kártya megfordításával akarjuk ezt az állítást ellenőrizni, akkor melyik a jó módszer?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Mind a hat kártyát megfordítjuk.
  2. Csak a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B} kártyát fordítjuk meg.
  3. Csak a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C} kártyákat fordítjuk meg.
  4. Az elözőek egyike sem helyes.

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}: \quad \operatorname{Adott}} egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} irányítatlan gráf. (2019 jun)

Van-e Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} -ben kör?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} Benne van P-ben, de nincs benne NP-ben.
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} Benne van NP-ben, de nincs benne P-ben.
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} Benne van P-ben is és NP-ben is.
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}} Nincs benne P-ben se és NP-ben se.

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}: \quad} Adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} irányítatlan gráf. (2019 jun)

Van-e Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} -ben pontosan 2019 csúcsot tartalmazó kör?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}} Benne van P-ben, de nincs benne NP-ben.
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}} Benne van NP-ben, de nincs benne P-ben.
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}} Benne van P-ben is és NP-ben is.
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}} Nincs benne P-ben se és NP-ben se.

Tegyük fel, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathrm{P} \neq} NP és jelölje Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_{1} \prec P_{2}} azt, hogy a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_{1}} probléma Karp-redukálható (polinomiálisan visszavezethető) a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_{2}} problémára. Tekintsük azt a két problémát, melyeknél adott egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (G, k)} pár és (2019 jun)

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A}}  : a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} élsúlyozott gráfban van-e legfeljebb Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} súlyú Hamilton-kör (2019 jun) ==

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B}}  : a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G} gráfban van-e legalább Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k} pontú teljes részgráf

Melyik állítás helyes az alábbiak közül?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A} \prec \mathcal{B}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B} \prec \mathcal{A}}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A} \prec \mathcal{B}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B} \nprec \mathcal{A}}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A} \nprec \mathcal{B}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B} \prec \mathcal{A}}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{A} \nprec \mathcal{B}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{B} \nprec \mathcal{A}}

Több különböző megbízás közül válogatunk, melyek mindegyikét adott napokon lehet elvégezni. Ha az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i} .ediket elvállaljuk, akkor a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k_{i}} naptól a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v_{i}} napig csak ezt csinálhatjuk. Legyen adott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} megbízás a hozzájuk tartozó Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k_{i}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v_{i}} dátumokkal. Azt akarjuk eldönteni, hogy elvállalható-e közülük legalább Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n / 2} darab (mindegy, hogy melyikek). (2019 jun)

Melyik helyes az alábbiak közül?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Tetszőleges irányított gráfban legrövidebb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
  2. Tetszőleges irányított gráfban leghosszabb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
  3. Irányított körmentes gráfban legrövidebb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.
  4. Irányított körmentes gráfban leghosszabb utat lehet polinom időben találni, és egy ilyen algoritmussal a feladat egyszerüen megoldható.

Melyik feladat oldható meg Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle O(n)} lépésben? (2019 jun)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Tetszőleges Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} különböző szám növekvő sorrendbe rendezése.
  2. Annak ellenőrzése, hogy egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} csúcsú gráf összefüggő-e.
  3. Tetszőleges, Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} elemet tároló bináris keresőfa alapján a tárolt elemek növekvő sorrendben való felsorolása.
  4. Tetszőleges Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle n} elemből egy bináris keresőfa építése.

Tekintsük a következő, az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_{1}, a_{2}, \ldots, a_{n}} paraméterektől függő rekurzív definíciót! Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (n+1) \times 1001} tömbben (2019 jun)

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[i, 0]=1} ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 \leq i \leq n}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[0, j]=0} ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 \leq j \leq 1001}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[i, j]=T[i-1, j]} ha és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle j \le a_{i}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[i, j]=\max \left\{T[i-1, j], T\left[i-1, j-a_{i}\right]\right\}} ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i \geq 1} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle j \geq a_{i}} .

Legyen Melyik igaz az alábbiak közül?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[2,15]=1}
  2. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[3,9]=0}
  3. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[3,10]=1}
  4. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T[20,3]=0}
  5. Az előzőek egyike sem igaz.