„Deep Learning a gyakorlatban Python és LUA alapon” változatai közötti eltérés

A VIK Wikiből
a Tóth Péter átnevezte a(z) VITMAV45 lapot a következő névre: Deep Learning a gyakorlatban Python és LUA alapon: Tárgykód helyett cím
 
(21 közbenső módosítás, amit 2 másik szerkesztő végzett, nincs mutatva)
3. sor: 3. sor:
| tárgykód = VITMAV45
| tárgykód = VITMAV45
| kredit = 4
| kredit = 4
| kereszt = ?
| kereszt = nincs
| tanszék = TMIT
| tanszék = TMIT
| jelenlét = gyakorlaton min. 70%
| jelenlét = gyakorlaton min. 70%
10. sor: 10. sor:
| kiszh = nincs
| kiszh = nincs
| nagyzh = nincs
| nagyzh = nincs
| hf = NHF + opcionális KHF-k
| hf = NHF + opcionális 5db KHF
| vizsga = írásbeli + szóbeli
| vizsga = írásbeli + szóbeli
| levlista = [https://groups.google.com/forum/#!forum/vitmav45 Google Groups]
| levlista = [https://groups.google.com/forum/#!forum/vitmav45 Google Groups]
16. sor: 16. sor:
| tárgyhonlap = http://smartlab.tmit.bme.hu/oktatas-deep-learning
| tárgyhonlap = http://smartlab.tmit.bme.hu/oktatas-deep-learning
}}
}}
Az adatmennyiség robbanásszerű növekedésével, a grafikus processzorok jelentős technológiai fejlődésével és a tudományterület új eredményeinek köszönhetően az elmúlt években a mély tanuló rendszerek, azon belül is a mély neurális hálózatok (Deep Neural Networks, DNN) valós életbeli folyamatok megfigyelések alapján történő modellezésének az egyik leghatékonyabb eszközévé váltak. A neuronháló mély rétegei a modellezni kívánt folyamat különböző, magas és alacsony szintű absztrakcióinak kinyerésére, osztályozására és predikciójára képesek. A mély tanuló rendszerek már a gépi beszéd- és látásfunkciók modellezésén túl alkalmasak például fordításra, zenei stílus automatikus osztályozására, felhasználói preferencia jóslására, felhasználó azonosítására, sőt, akár rajzolni és zenét komponálni is tudnak. Napjainkban már az olyan nagy cégek, mint a Google, Facebook, Amazon, IBM is egyre több technológiájukat helyezik deep learning alapokra. A tárgy gyakorlati problémák megoldásán keresztül tanítja meg a rendelkezésre álló, az iparban is széles körben használt két legfontosabb nyílt forráskódú mély tanuló keretrendszer, a Facebook által támogatott Torch (LUA) és a Theano (Python) programozását és az ezek széleskörű használatához szükséges elméleti alapokat.
== Követelmények ==
Gyakorlatok 70%-án való részvétel, amit jelenléti ívvel ellenőriznek is!
Nagy házi feladat elkészítése és bemutatása.


== Követelmények ==
Vizsga (írásbeli és szóbeli).


== Házi ==
== Házi ==
3 fős csapatokban egy szabadon választott témából kell házi feladatot kidolgozni. A nagyházi megléte az aláírás feltétele! A házi mellé egy beszámoló dokumentumot is kell készíteni. Megfelelő minőségű és mennyiségű házi feladatért megajánlott jegy (4-es vagy 5-ös) jár. Megajánlott jegyhez kötelezően kell 2 mérföldkövet tartani!
Ezen felül 5db szorgalmi kis házi kerül kiírásra a félév során. Egyenként 20 pontot lehet rájuk kapni, összesen 70%-ra +1 jegy jár. Érdemes velük foglalkozni, rengeteget lehet velük tanulni, fejlődni a témakörben. Ezeket GitHubra feltöltött Jupyter notebook formátumban kell beadni.


== Vizsga ==
== Vizsga ==
A vizsgán megajánlott jegyért a nagyháziról szóló előadást kell megtartani, válaszolni kérdésekre, ezután a vizsgáztatók osztályozzák a munkát. (Az előadás kb 7-10 perc)


Ha nem megajánlott jegyre mész:
A vizsga elsősorban szóbeli, 3 témakört (melyből az első fixen a backpropagation) kellett papíron alaposan kidolgozni, majd ezekről szóban beszélni és kérdésekre válaszolni. Jó jegyhez alaposan kell tudni és érteni a dolgokat, gyakorlati szinten is!
Pár főbb téma ami előfordulhat: convnet, VAE, GAN, RNN, BPTT, LSTM, hiperparaméter optimalizálás.


== Tippek ==
== Tippek ==
A tárgy oktatói mindenkit ösztönöznek a megajánlott jegy megszerzésére. Kis házi feladatok 70%-os teljesítésével és az előadásokon Kahoot! kvíz kitöltésével +1 jegyet lehet szerezni.


Ha még nem programoztál soha Pythonban, erősen ajánlott a kurzus elkezdése előtt megismertetni magad vele és a NumPy könyvtárral. A tárgyhonlapon találsz rengeteg hasznos forrást szinte mindenhez. A projekteket bármilyen keretrendszerben elkészítheted, de gyakorlaton elősorban Keras-al és Tensorflowval fogsz találkozni. A lineáris algebra alapjait is jó, ha átnézed első előadás előtt.


== Verseny ==
== Verseny ==
Az előadásokon Kahoot! verseny van, a legeredményesebb 5 hallgató a félév végén +1 jegyet kap.
== Kedvcsináló ==
===2016/7===


Izgalmas, cutting-edge technológiát mutat be, minden előadáson szánnak pár percet arra, hogy bemutassák az aktuális híreket. Viszont nehéz, van egy nagy házi, amit csapatosan kell megcsinálni és nagyon-nagyon sok időt elvesz. Nem lehet az utolsó hétre hagyni. A tárgyhonlapon van kint egy javaslat, hogy hány órát kell hetente a tárgyra szánni, az tényleg kell. De ha jó házit adsz be, akkor nem kell vizsgázni (egy ötös házit viszont büszkén lehet mutogatni).(NGD)


== Kedvcsináló ==
===2019/20===
Ha érdekel a téma mindenképp érdemes felvenni, nagyon jó tárgy, jól előadva és szervezve. Előadásra és gyakorlatra is érdemes bejárni, egyrészt mert érdekes és sokat lehet tanulni, másrészt a diákból - ha nem voltál benn - utólagosan nem lehet megfelelően felkészülni. A nagyházi nehéz, főleg, hogy ha nincs tapasztalatod a területen és választasz egy izgalmas témát, foglamad sincs, mibe vered a fejszéd. Sok idő elmegy vele, de annál többet lehet vele tanulni. Összességében bátran ajánlom (de csak akkor ha tudod, hogy lesz időd vele foglalkozni)!


[[Category:Valaszthato]]
[[Category:Valaszthato]]

A lap jelenlegi, 2020. január 19., 18:57-kori változata

Deep Learning a gyakorlatban Python és LUA alapon
Tárgykód
VITMAV45
Általános infók
Kredit
4
Keresztfélév
nincs
Tanszék
TMIT
Követelmények
Jelenlét
gyakorlaton min. 70%
Minimális munka
NHF + vizsga
Labor
nincs
KisZH
nincs
NagyZH
nincs
Házi feladat
NHF + opcionális 5db KHF
Vizsga
írásbeli + szóbeli
Elérhetőségek
Levlista

Az adatmennyiség robbanásszerű növekedésével, a grafikus processzorok jelentős technológiai fejlődésével és a tudományterület új eredményeinek köszönhetően az elmúlt években a mély tanuló rendszerek, azon belül is a mély neurális hálózatok (Deep Neural Networks, DNN) valós életbeli folyamatok megfigyelések alapján történő modellezésének az egyik leghatékonyabb eszközévé váltak. A neuronháló mély rétegei a modellezni kívánt folyamat különböző, magas és alacsony szintű absztrakcióinak kinyerésére, osztályozására és predikciójára képesek. A mély tanuló rendszerek már a gépi beszéd- és látásfunkciók modellezésén túl alkalmasak például fordításra, zenei stílus automatikus osztályozására, felhasználói preferencia jóslására, felhasználó azonosítására, sőt, akár rajzolni és zenét komponálni is tudnak. Napjainkban már az olyan nagy cégek, mint a Google, Facebook, Amazon, IBM is egyre több technológiájukat helyezik deep learning alapokra. A tárgy gyakorlati problémák megoldásán keresztül tanítja meg a rendelkezésre álló, az iparban is széles körben használt két legfontosabb nyílt forráskódú mély tanuló keretrendszer, a Facebook által támogatott Torch (LUA) és a Theano (Python) programozását és az ezek széleskörű használatához szükséges elméleti alapokat.

Követelmények

Gyakorlatok 70%-án való részvétel, amit jelenléti ívvel ellenőriznek is!

Nagy házi feladat elkészítése és bemutatása.

Vizsga (írásbeli és szóbeli).

Házi

3 fős csapatokban egy szabadon választott témából kell házi feladatot kidolgozni. A nagyházi megléte az aláírás feltétele! A házi mellé egy beszámoló dokumentumot is kell készíteni. Megfelelő minőségű és mennyiségű házi feladatért megajánlott jegy (4-es vagy 5-ös) jár. Megajánlott jegyhez kötelezően kell 2 mérföldkövet tartani!

Ezen felül 5db szorgalmi kis házi kerül kiírásra a félév során. Egyenként 20 pontot lehet rájuk kapni, összesen 70%-ra +1 jegy jár. Érdemes velük foglalkozni, rengeteget lehet velük tanulni, fejlődni a témakörben. Ezeket GitHubra feltöltött Jupyter notebook formátumban kell beadni.

Vizsga

A vizsgán megajánlott jegyért a nagyháziról szóló előadást kell megtartani, válaszolni kérdésekre, ezután a vizsgáztatók osztályozzák a munkát. (Az előadás kb 7-10 perc)

Ha nem megajánlott jegyre mész: A vizsga elsősorban szóbeli, 3 témakört (melyből az első fixen a backpropagation) kellett papíron alaposan kidolgozni, majd ezekről szóban beszélni és kérdésekre válaszolni. Jó jegyhez alaposan kell tudni és érteni a dolgokat, gyakorlati szinten is! Pár főbb téma ami előfordulhat: convnet, VAE, GAN, RNN, BPTT, LSTM, hiperparaméter optimalizálás.

Tippek

A tárgy oktatói mindenkit ösztönöznek a megajánlott jegy megszerzésére. Kis házi feladatok 70%-os teljesítésével és az előadásokon Kahoot! kvíz kitöltésével +1 jegyet lehet szerezni.

Ha még nem programoztál soha Pythonban, erősen ajánlott a kurzus elkezdése előtt megismertetni magad vele és a NumPy könyvtárral. A tárgyhonlapon találsz rengeteg hasznos forrást szinte mindenhez. A projekteket bármilyen keretrendszerben elkészítheted, de gyakorlaton elősorban Keras-al és Tensorflowval fogsz találkozni. A lineáris algebra alapjait is jó, ha átnézed első előadás előtt.

Verseny

Az előadásokon Kahoot! verseny van, a legeredményesebb 5 hallgató a félév végén +1 jegyet kap.

Kedvcsináló

2016/7

Izgalmas, cutting-edge technológiát mutat be, minden előadáson szánnak pár percet arra, hogy bemutassák az aktuális híreket. Viszont nehéz, van egy nagy házi, amit csapatosan kell megcsinálni és nagyon-nagyon sok időt elvesz. Nem lehet az utolsó hétre hagyni. A tárgyhonlapon van kint egy javaslat, hogy hány órát kell hetente a tárgyra szánni, az tényleg kell. De ha jó házit adsz be, akkor nem kell vizsgázni (egy ötös házit viszont büszkén lehet mutogatni).(NGD)

2019/20

Ha érdekel a téma mindenképp érdemes felvenni, nagyon jó tárgy, jól előadva és szervezve. Előadásra és gyakorlatra is érdemes bejárni, egyrészt mert érdekes és sokat lehet tanulni, másrészt a diákból - ha nem voltál benn - utólagosan nem lehet megfelelően felkészülni. A nagyházi nehéz, főleg, hogy ha nincs tapasztalatod a területen és választasz egy izgalmas témát, foglamad sincs, mibe vered a fejszéd. Sok idő elmegy vele, de annál többet lehet vele tanulni. Összességében bátran ajánlom (de csak akkor ha tudod, hogy lesz időd vele foglalkozni)!