„Számítógépes látórendszerek - Ellenőrző kérdések: Frekvenciatartomány” változatai közötti eltérés
| (3 közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva) | |||
| 8. sor: | 8. sor: | ||
===FFT: Fast Fourier Transformation=== | ===FFT: Fast Fourier Transformation=== | ||
Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban. | Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban. | ||
Megjegyzés az értelmezéshez: Fourirer transzformálni csak periodikus jeleket lehet, ezt úgy biztosítjuk, hogy a képet ''végtelenszer'' ismételjük az x és y irányokban (pusztán elméleti értelemben, nyilván). | |||
===DCT vs DFT:=== | ===DCT vs DFT:=== | ||
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén. További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is. | Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén (ez energiatömörítés, kisebb lesz a spektrum integrálja). További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is. | ||
* '''DCT''': Discrete Cosine Transform | |||
* '''DFT''': Discrete Fourier Transform | |||
===FCT: Fast Cosine Transform=== | ===FCT: Fast Cosine Transform=== | ||
# Szimmetrikus függvény | # Szimmetrikus függvény | ||
| 22. sor: | 28. sor: | ||
'''Aluláteresztő szűrő:''' Ebben az esetben alacsonyabb frekvenciás komponensek súlya nagyobb, mint a magasabb frekvenciásoké. <br/> | '''Aluláteresztő szűrő:''' Ebben az esetben alacsonyabb frekvenciás komponensek súlya nagyobb, mint a magasabb frekvenciásoké. <br/> | ||
'''Felüláteresztő szűrő:''' Ebben az esetben magasabb frekvenciás komponensek súlya nagyobb, mint az alacsonyabb frekvenciásoké. <br/> | '''Felüláteresztő szűrő:''' Ebben az esetben magasabb frekvenciás komponensek súlya nagyobb, mint az alacsonyabb frekvenciásoké. <br/> | ||
'''Zajszűrés frekvenciatartományban:''' Periodikus zajok nagyon jól kiszűrhetőek | '''Zajszűrés frekvenciatartományban:''' Periodikus zajok nagyon jól kiszűrhetőek, mivel frekvenciatartományban jól körülhatárolható komponensek okozzák őket. Elméletileg ez megoldható lenne képtartományban is, de túl költséges lenne, mert nagyon nagy kernel kellene hozzá a szűrő jellege miatt (lyukszűrő?). Aluláteresztő szűrővel a nagyfrekvenciás zaj is jól kiszűrhető. Felüláteresztő szűrővel az élek, körvonalak jól meghatározhatóak. <br/> | ||
== Ismertesse a konvolúció és a frekvenciatartománybeli műveletek kapcsolatát. <br/>Mit jelent a dekonvolúció? <br/>Mit jelent a Wiener dekonvolúció és mikor használjuk? == | == Ismertesse a konvolúció és a frekvenciatartománybeli műveletek kapcsolatát. <br/>Mit jelent a dekonvolúció? <br/>Mit jelent a Wiener dekonvolúció és mikor használjuk? == | ||