„Számítógépes látórendszerek - Ellenőrző kérdések: Frekvenciatartomány” változatai közötti eltérés

 
(3 közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva)
8. sor: 8. sor:
===FFT: Fast Fourier Transformation===
===FFT: Fast Fourier Transformation===
Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban.
Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban.
Megjegyzés az értelmezéshez: Fourirer transzformálni csak periodikus jeleket lehet, ezt úgy biztosítjuk, hogy a képet ''végtelenszer'' ismételjük az x és y irányokban (pusztán elméleti értelemben, nyilván).
===DCT vs DFT:===
===DCT vs DFT:===
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén. További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is.
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén (ez energiatömörítés, kisebb lesz a spektrum integrálja). További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is.
* '''DCT''': Discrete Cosine Transform
* '''DFT''': Discrete Fourier Transform
 
===FCT: Fast Cosine Transform===
===FCT: Fast Cosine Transform===
# Szimmetrikus függvény
# Szimmetrikus függvény
22. sor: 28. sor:
'''Aluláteresztő szűrő:''' Ebben az esetben alacsonyabb frekvenciás komponensek súlya nagyobb, mint a magasabb frekvenciásoké. <br/>
'''Aluláteresztő szűrő:''' Ebben az esetben alacsonyabb frekvenciás komponensek súlya nagyobb, mint a magasabb frekvenciásoké. <br/>
'''Felüláteresztő szűrő:''' Ebben az esetben magasabb frekvenciás komponensek súlya nagyobb, mint az alacsonyabb frekvenciásoké. <br/>
'''Felüláteresztő szűrő:''' Ebben az esetben magasabb frekvenciás komponensek súlya nagyobb, mint az alacsonyabb frekvenciásoké. <br/>
'''Zajszűrés frekvenciatartományban:''' Periodikus zajok nagyon jól kiszűrhetőek és bár elméletileg ez megoldható lenne képtartományban is, de túl költséges lenne, mert nagyon nagy kernel kellene hozzá. Aluláteresztő szűrővel a nagyfrekvenciás zaj is jól kiszűrhető. Felüláteresztő szűrővel az élek, körvonalak jól meghatározhatóak. <br/>
'''Zajszűrés frekvenciatartományban:''' Periodikus zajok nagyon jól kiszűrhetőek, mivel frekvenciatartományban jól körülhatárolható komponensek okozzák őket. Elméletileg ez megoldható lenne képtartományban is, de túl költséges lenne, mert nagyon nagy kernel kellene hozzá a szűrő jellege miatt (lyukszűrő?). Aluláteresztő szűrővel a nagyfrekvenciás zaj is jól kiszűrhető. Felüláteresztő szűrővel az élek, körvonalak jól meghatározhatóak. <br/>


== Ismertesse a konvolúció és a frekvenciatartománybeli műveletek kapcsolatát. <br/>Mit jelent a dekonvolúció? <br/>Mit jelent a Wiener dekonvolúció és mikor használjuk? ==
== Ismertesse a konvolúció és a frekvenciatartománybeli műveletek kapcsolatát. <br/>Mit jelent a dekonvolúció? <br/>Mit jelent a Wiener dekonvolúció és mikor használjuk? ==