„Jelek és rendszerek - ZH2 2006.04.20.” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
a Szikszayl átnevezte a(z) Jelek és rendszerek - ZH 2006.04.20. lapot Jelek és rendszerek - ZH2 2006.04.20. lapra átirányítás nélkül |
(Egy közbenső módosítás ugyanattól a felhasználótól nincs mutatva) | |
(Nincs különbség)
|
A lap jelenlegi, 2014. április 26., 12:01-kori változata
A csoport
Nagykérdés
Adottak:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H(e^{j\omega})=?}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u[0]=2, u[1]=1, u[2]=2, u[3]=0, u[k+4]=u[k]}
(aki tudja, az eredeti feladatban mi szerepelt a kérdőjelek helyén, beírhatná...)
- Határozza meg az átviteli tényezőket Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi} körfrekvenciákra!
- Adja meg a gerjesztő jel komplex Fourier-együtthatóját!
- Adja meg a gerjesztő jel valós Fourier-sorát!
- Írja föl a rendszer Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k]} válaszának időfüggvényét!
Kiskérdések (kérdésenként 1-1 pont)
- Adja meg a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t)=5\sin(\omega t-\frac{\pi}{4})}
jel komplex amplitúdóját!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \overline X=3\cdot e^{-j\frac{\pi}{ ? 2 ? }}}Megoldás3:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \overline X=5\cdot e^{-j\frac{3\pi}{ 4 }}} , mert: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 5sin(\omega t - \frac{\pi}{4}) = 5cos(\omega t - \frac{3\pi}{4}) \rightarrow 5\cdot e^{-j\frac{3\pi}{4}}}
(-- csé - 2007.05.15.) - Határozza meg a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H(j\omega)=\frac{5}{j\omega+2}}
átviteli karakterisztikájú rendszer sávszélességét. Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \epsilon=1}
...
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Delta \omega=2}
Rendszer sávszélessége alatt az áteresztő tartomány szélességét értjük. Áteresztő tartomány ha |H(j*omega)||>=Hmax/gyök(1+epszilonnégyzet) omega eleme [omegaa, omegab] az látszik hogy a fenti átviteli karakterisztikának omega=0-nál van a maximuma ami 2,5. Ezután már csak a tartomány másik végét kell megtalálni. Ehhez a következő egyenlőséget kell megoldani: ||H(j*omega)=Hmax/gyök(1+epszilonnégyzet) komplex tört abszolút értéke a számláló abszolút értéke/nevező abszolút értéke. A számlálóé 5. a nevezőé gyök(valósrésznégyzet+képzetesrésznégyzet)=gyök(omeganégyzet+4). tehát: 5/gyök(omeganégyzet+4)=2,5/gyök2 Ebből omegára +/-2 adódik. Tehát a rendszer sávszélessége kettő.
A megoldás levlistáról By Wittek Ádám (utólagos engedelmeddel az utókornak)-- banti - Adja meg a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t)=\epsilon(t+T/2)-\epsilon(t-T/2)}
folytonos idejű, páros jel spektrumának képzetes részét!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Im\{X(j\omega)\}=0} , mert az x(t) fv páros, így csak valós összetevője van. - Adja meg a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t)=1+5\cos(\omega t-1.73)+2\cos(3\omega t)}
jel teljesítményét!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_x=15.5} - Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t)}
folytonos idejű jel sávkorlátozott és sávkorlátja Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega}
. Fejezze ki ezt matematikai alakban!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(j\omega)=0} , ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left|{\omega}\right|>\Omega}
B csoport
Nagykérdés
Egy FI rendszer impulzusválasza: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h(t)=2\delta(t) + \epsilon(t)(5e^{-2t}-3e^{-4t})} , gerjesztése: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 10+5\cos(\omega t-0.8)} , a körfrekvencia: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega=3.2}
a. Határozza meg a rendszer átviteli karakterisztikáját, és adja meg normálalakban, rendezett polinomok hányadosaként! (3 pont)
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H(j\omega)=2+\frac{5}{j\omega+2}-\frac{3}{j\omega+4}=\frac{2(j\omega)^2+14j\omega+30}{(j\omega)^2+6j\omega+8}}
b. Adja meg a gerjesztő jel középértékét és effektív értékét! (2 pont)
Megoldás:
A gerjesztés a 3.1-69 képletnek megfelelően van megadva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{array}{*{20}c} {x(t) = X_0 + \sum\limits_{p = 1}^\infty {X_p \cos (p\Omega t + \xi _p )} } & , & {\Omega = \frac{{2\pi }}{T}} \\ \end{array} }
Teljesítmény a 3.1-73 képlet szerint:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_x = X_0^2 + \frac{1}{2}\sum\limits_{p = 1}^\infty {X_p^2 } }
Ennek négyzetgyöke lesz az effektív érték:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_{eff} = \sqrt {X_0^2 + \frac{1}{2}\sum\limits_{p = 1}^\infty {X_p^2 } } = \sqrt {X_0 ^2 + \frac{1}{2}X_1 ^2 } = \sqrt {10^2 + \frac{1}{2}5^2 } }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_0=10}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_eff=\sqrt{100+\frac{25}{2}}=10.607}
c. Határozza meg a rendszer átviteli tényezőjét a megadott Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega}
körfrekvencián! (2 pont)
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H(j3.2)=2.245-j0.758=2.369e^{-j0,326}}
d. Számítsa ki a rendszer Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(t)} válaszának időfüggvényét! (3 pont)
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H(0)=3.75}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(t)=37.5+11.849\cos(\omega t-1.126)}
Kiskérdések (kérdésenként 1-1 pont)
1. Az x[k] DI szinuszos jel komplex amplitúdója Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \overline X = 2e^{^{j\frac{\pi }{3}} }} , körfrekvenciája Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \vartheta = \frac{\pi }{2}} . Adja meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y[k]=x[k-1]} jel komplex amplitúdóját!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left|{\overline Y}\right|=2 \cdot e^{-j\frac{\pi}{6}}=2 \cdot e^{-j0.524}}
2. Fogalmazza meg matematika alakban a torzításmentes jelátvitel kritériumát a folytonos idejű rendszer gerjesztés-válasz kapcsolatára vonatkozóan, az időtartományban!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(t)=K \cdot u(t-T)}
3. Egy FI idejű rendszer átviteli tényezője adott körfrekvencián Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \overline H = 0.73e^{ - j1.05}} . Adja meg a rendszer erősítését ugyanezen a körfrekvencián decibel [dB] egységben!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 20\lg\left|{\overline H}\right|=-2.73 dB}
4. Legfeljebb hány körfrekvenciájú harmónikus összetevőt tartalmazhat az L=6 periódusú diszkrét idejű jel valós Fourier sora? Sorolja fel ezen összetevők körfrekvenciáit!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \vartheta 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi}
5. Egy folytonos idejű rendszer ugrásválaszának spektruma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G(j\omega)} . Írja fel ennek ismeretében a rendszer átviteli karakterisztikáját!
Megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H(j\omega)=j\omega\cdot G(j\omega)}