„Matematika A3 villamosmérnököknek - Vizsga, 2006.06.02.” változatai közötti eltérés

Hryghr (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
Szikszayl (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
 
(4 közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{Vissza|Matematika A3 villamosmérnököknek}}
{{Vissza|Matematika A3 villamosmérnököknek}}
__NOTOC__


''Dr. Andai Attila'' által összeállított feladatsor.
''Dr. Andai Attila'' által összeállított feladatsor.
9. sor: 11. sor:
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=<math>\sinh z = i</math> <br>
|szöveg=<math>\sinh z = i</math> <br>
<math>\sinh z = \sinh{x} \cos{y} + \j \cosh{c} \sin{y} = \j</math> <br>
<math>\sinh z = \sinh{x} \cos{y} + i \cosh{c} \sin{y} = i</math> <br>
Ebből következik:
Ebből következik:
* <math>\sinh{x} \cos{y} = 0</math>, ami <math>x = 0</math> vagy <math>y = \frac{\pi}{2} + k2\pi</math> számpárokra teljesül
* <math>\sinh{x} \cos{y} = 0</math>, ami <math>x = 0</math> vagy <math>y = \frac{\pi}{2} + k2\pi</math> számpárokra teljesül
* <math>\cosh{x} \sin{y} = 1</math>, ami szintén a fenti számpárokra teljesül
* <math>\cosh{x} \sin{y} = 1</math>, ami szintén a fenti számpárokra teljesül
tehát <math>z= 0 + \j (\frac{\pi}{2} + k2\pi), k\in\mathbb{Z}</math>.
tehát <math>z= 0 + i (\frac{\pi}{2} + k2\pi), k\in\mathbb{Z}</math>.
}}
}}
==2. feladat==
==2. feladat==
Mutassa meg, hogy az <math> u(x,y) = e^{-y}\sin x </math> függvény harmonikus , és keresse meg azt a <math>v(x,y)</math> harmonikus társat, amelynél az <math> f(x+iy) = u(x,y)+iv(x,y)</math> függvényre  <math>f(0)=0</math> teljesül. ''(15p)''
Mutassa meg, hogy az <math> u(x,y) = e^{-y}\sin x </math> függvény harmonikus , és keresse meg azt a <math>v(x,y)</math> harmonikus társat, amelynél az <math> f(x+iy) = u(x,y)+iv(x,y)</math> függvényre  <math>f(0)=0</math> teljesül. ''(15p)''
50. sor: 53. sor:
</math>
</math>
}}  
}}  
===4. feladat===
==4. feladat==
Oldja meg az
Oldja meg az
<math>
<math>
107. sor: 110. sor:
<math>y(x) = xe^{-x}+c_{1}e^{-x}+c_{2}e^{-2x}+0.5</math>
<math>y(x) = xe^{-x}+c_{1}e^{-x}+c_{2}e^{-2x}+0.5</math>
}}
}}
===5. feladat===
==5. feladat==
A komplex sík mely pontjaiban differenciálható az <math>f(z) = \bar z z^2</math> függvény ? ''(15p)''
A komplex sík mely pontjaiban differenciálható az <math>f(z) = \bar z z^2</math> függvény ? ''(15p)''
{{Rejtett
{{Rejtett
113. sor: 116. sor:
|szöveg=TODO
|szöveg=TODO
}}
}}
===6. feladat===
==6. feladat==
Oldja meg az
Oldja meg az
<math>
<math>
137. sor: 140. sor:
}}
}}


[[Kategória:Villanyalap]]
[[Kategória:Villamosmérnök]]