„Algoritmuselmélet - Vizsga, 2013.06.06.” változatai közötti eltérés

A VIK Wikiből
Subdiaz (vitalap | szerkesztései)
Nagy Marcell (vitalap | szerkesztései)
a autoedit v2: fájlhivatkozások egységesítése, az új közvetlenül az adott fájlra mutat
 
(43 közbenső módosítás, amit 8 másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{Vissza|Algoritmuselmélet}}
==2013.06.06. vizsga megoldásai==
==2013.06.06. vizsga megoldásai==
===1. Feladat (Van megoldás) ===
===1. Feladat (Van megoldás) ===
8. sor: 10. sor:
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=
'''(a)'''<br>
'''a)'''<br>
Tekintsük a G irányított gráf egy mélységi bejárását és a kapott T mélységi feszítő erdőt. Ezen bejárás szerint G egy x → y éle keresztél, ha x és y nem leszármazottjai egymásnak.
Tekintsük a G irányított gráf egy mélységi bejárását és a kapott T mélységi feszítő erdőt. Ezen bejárás szerint G egy x → y éle keresztél, ha x és y nem leszármazottjai egymásnak.


'''(b)'''<br>
'''b)'''<br>
msz - mélységi szám<br>
msz - mélységi szám<br>
bsz - befejezési szám<br>
bsz - befejezési szám<br>
Ha <math> (msz[y] < msz[x]) </math> és <math>(bsz[y] > 0) </math>, akkor az x →  y egy keresztél.<br>
Ha <math> (msz[y] < msz[x]) </math> és <math>(bsz[y] > 0) </math>, akkor az x →  y egy keresztél.<br>
[[Fájl:keresztel_1.png]]<br>
[[Media:Algel vizsga 2013tavasz Keresztel 1.png]]<br>
'''(c)'''<br>
'''c)'''<br>
A b) rész alapján könnyen belátható. Ha lenne keresztél, az azt jelentené, hogy van olyan x → y él, amire fennáll, hogy <math> (msz[y] < msz[x]) </math> és <math>(bsz[y] > 0) </math>, vagyis y-ban előbb jártunk, mint x-ben, és y-nak van befejezési száma. Ennél fogva nem lehet keresztél, hiszen ha lenne, akkor y-ból eljuthattunk volna még x-be, mielőtt befejeztük volna.
A '''b)''' rész alapján könnyen belátható. Ha lenne keresztél, az azt jelentené, hogy van olyan x → y él, amire fennáll, hogy <math> (msz[y] < msz[x]) </math> és <math>(bsz[y] > 0) </math>, vagyis y-ban előbb jártunk, mint x-ben, és y-nak van befejezési száma. Ennél fogva nem lehet keresztél, hiszen ha lenne, akkor y-ból eljuthattunk volna még x-be, mielőtt befejeztük volna.<br>
Másképpen mondva: Nem fejezhettük volna be y-t anélkül, hogy ne jártunk volna x-ben.<br>
'''Másképpen mondva:''' Nem fejezhettük volna be y-t anélkül, hogy ne jártunk volna x-ben.<br>
[[Fájl:keresztel_2.PNG]]<br>
[[Media:Algel vizsga 2013tavasz Keresztel 2.PNG]]<br>
}}
}}


===2. Feladat===
===2. Feladat (Van megoldás)===
Milyen műveletek vannak a nyitott címzésű hash-elésnél? Hogyan kell megvalósítani a keresést, ha a nyitott címzésű hashelésnél kvadratikus maradék próbát használunk?  
Milyen műveletek vannak a nyitott címzésű hash-elésnél? Hogyan kell megvalósítani a keresést, ha a nyitott címzésű hashelésnél kvadratikus maradék próbát használunk?  


28. sor: 30. sor:
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=
'''Nyitott címzésű hash-elés műveletei:'''<br><br>
todo <br><br>


'''(''Nem kérdezték, csak kieg.'') Mi az a nyitott címzésű hash-elés?'''<br><br>
{{Rejtett
todo <br><br>
|mutatott=<big>'''Kiegészítések a feladat megértéséhez'''</big>
|szöveg=
 
'''Mi az a nyitott címzésű hash-elés?'''<br><br>
lásd: [[Hash_tömb]] <br><br>


'''(''Nem kérdezték, csak kieg.'') Mi az a kvadratikus maradék próba, nyitott címzésű hash-elésnél?'''<br><br>
'''Mi az a kvadratikus maradék próba, nyitott címzésű hash-elésnél?'''<br><br>
todo <br><br>
todo <br><br>
}}
'''Nyitott címzésű hash-elés műveletei:'''<br><br>
Új elem beszúrása, elem keresése, elem törlése.<br>
A törlés speciális jelzéssel történik.<br><br>


'''keresés megvalósítása nyitott címzésű hash-elés esetén kvadratikus maradék próbánál:'''<br><br>
'''Keresés megvalósítása nyitott címzésű hash-elés esetén kvadratikus maradék próbánál:'''<br><br>
todo <br><br>
A kvadratikus maradék próba egy álvéletlen próba, ezért másodlagos csomósodáshoz vezethet.<br>
Legyen M egy 4k + 3 alakú prímszám, ahol k egy pozitív egész.<br>
Ekkor a próbasorozat legyen<br>
<math> 0,1^2,(-1)^2, 2^2,(-2)^2,..,\left ( \frac{M-1}{2} \right )^{2}, -\left ( \frac{M-1}{2} \right )^{2} </math>


}}
}}


===3. Feladat===
===3. Feladat (Van megoldás)===
Adja meg az UNIÓ-HOLVAN adatszerkezet definícióját! (A fákkal való implementálást nem kell leírnia.) Mutassa meg, hogy mikor és hogyan használjuk az UNIÓ és a HOLVAN műveleteket a Kruskal algoritmusban!  
Adja meg az UNIÓ-HOLVAN adatszerkezet definícióját! (A fákkal való implementálást nem kell leírnia.) Mutassa meg, hogy mikor és hogyan használjuk az UNIÓ és a HOLVAN műveleteket a Kruskal algoritmusban!  


48. sor: 59. sor:
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=
{{Rejtett
|mutatott=<big>'''Kiegészítések a feladat megértéséhez'''</big>
|szöveg=
'''Mi az a Kruskal algoritmus?'''<br>
A Kruskal algoritmust minimális költségű feszítőfák meghatározására használjuk. A piros-kék algoritmus egyik implementációja. <br>
Lényege, hogy a gráf éleit súlyuk szerint nem csökkenő sorrendbe állítja, majd sorban megpróbálja kékre színezni őket. <br>
Ennek az a feltétele, hogy az újonnan kékre színezendő él beszínezése után se legyen kör a kékre színezett élek által alkotott gráfban. <br>
Ha ez mégis kört eredményezne, úgy az él nem kék, hanem piros lesz.<br>
A kékre színezett élek egy minimális összsúlyú feszítőfát adnak.<br><br>
}}
'''UNIÓ-HOLVAN adatszerkezet definíciója: '''<br><br>
'''UNIÓ-HOLVAN adatszerkezet definíciója: '''<br><br>
todo <br><br>
Adott egy véges S halmaz, amelynek egy felosztását (partícióját) akarjuk tárolni. <br>
2 műveletünk van:<br>
 
UNIÓ(U, V halmazok, amelyek S részhalmazai): S-ből kivesszük az U-t és a V-t, majd hozzáadjuk (unió) U és V unióját. <br><br>


'''(''Nem kérdezték, csak kieg.'') Mi az a Kruskal algoritmus?'''<br>
HOLVAN(v pont, v benne van S-ben): Azt az U halmazt adja meg, amelynek v eleme.<br><br>
todo <br><br>


'''Mikor és hogyan használjuk az UNIÓ és a HOLVAN műveleteket a Kruskal algoritmusban:'''<br>
'''Mikor és hogyan használjuk az UNIÓ és a HOLVAN műveleteket a Kruskal algoritmusban:'''<br>
todo <br><br>
A Kruskal algoritmus lelke az UNIÓ-HOLVAN adatszerkezet. <br>
Kezdetben a gráf minden pontja másik <math>U_i</math> részhalmazban van, tehát minden <math>U_i</math> egy pontot tartalmaz.<br>
Az algoritmus elindul a legkisebb súlyú éleken. <br>
Az élek két végpontjára (v és w) megvizsgálja, hogy HOLVAN(v) egyenlő-e HOLVAN(w)-vel. <br>
Ha igen, akkor egy részhalmazban vannak, kört okoznának => piros él lesz.<br>
Ha nem áll fenn az egyenlőség, akkor a (v,w) kék lesz, a két részhalmazt pedig nyugodtan egyesíthetjük (hozzávehetjük az új élet a kék gráfhoz):<br>
UNIÓ(<math>U_v</math>,<math>U_w</math>).


}}
}}
127. sor: 158. sor:
#Az első sor alapján az 1-es csomag értéke €10, súlya 4kg.
#Az első sor alapján az 1-es csomag értéke €10, súlya 4kg.
#A második sor alapján a 2-es csomag értéke €5, súlya 2kg.
#A második sor alapján a 2-es csomag értéke €5, súlya 2kg.
#A 3. sornál kicsit rafkósnak kell lenni. Leírhatnám egyből a megoldást, de talán több értelme van, ha a logikai zsákutcákat is leírom.
#A 3. lépésben 2 lehetőségünk van, a 3. csomag értéke vagy 13-5=€8, vagy 13-0=€13.
##Először gondolhatnánk arra, hogy a [4,3]-as cella 10+3 formában áll elő, így a 3-as csomag értéke €3. Viszont így a súlyának 0kg-nak kéne lennie, ami nyílván fatal error.
##€8 nem lehet, mert akkor a súlya 2kg lenne, de akkor a [2,3] cellába 8 lenne, nem 5.
##Második gondolatunk az lehetne, hogy akkor 5+8 formában áll elő, így a 3-as csomag értéke €8. Súlya ekkor 2kg kellene legyen, viszont akkor a [2,3]-as cellába 8-nak, és nem 5-nek kéne szerepelnie, tehát ez se jó megoldás.
##Így csak a €13 jöhet szóba, súlya pedig 4kg, ami jó megoldás lesz.
##Harmadik ötletnek nagyon más nem jöhet szóba, hogy akkor a 3-as csomag értéke €13, súlya pedig 4kg. És ha leellenőrizzük, látszik, hogy ez lesz a jó megoldás.


{{Rejtett
|mutatott=''Avagy kicsit gépiesebb megoldás:''
|szöveg=
<br>
Jelölje <math> T[s,cs]</math> a táblázat <math>[s,cs]</math> celláját, továbbá <math> V_3</math> a 3. csomag értékét, <math> S_3</math> pedig a súlyát.<br><br>
Tudjuk, hogy <math> T[s,cs]=max\left \{ T[s,cs-1];V_i+T[s-S_i,cs-1] \right \}</math>, ami ebben az esetben:<br><br>
<math> T[4,3]=max\left \{ T[4,2];V_3+T[4-S_3,2] \right \} \rightarrow  13=max\left \{ 10;V_3+T[4-S_3,2] \right \}</math>, amiből következik, hogy:<br><br>
<math> 13=V_3+T[4-S_3,2] \rightarrow V_3 = 13-T[4-S_3,2]\Rightarrow\Rightarrow S_3=4, V_3=13</math> (Átgondolható, hogy a 3. csomag súlya nem lehet 1,2 vagy 3kg).
}}
Tehát végeredményben a megoldás:
Tehát végeredményben a megoldás:
*1-es csomag (€10, 4kg)
*1-es csomag (€10, 4kg)
148. sor: 187. sor:
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=
[[File:2013_06_06_V2_6.png]]
[[Media:Algel vizsga 2013tavasz V2 6.png]]


'''a)''' Prim algoritmus - Ugyebár úgy dolgozik, hogy az aktuális fához a vele szomszédos élek közül a legkisebb súlyút veszi be. Prim: BE → ED → BA → BC
'''a)''' Prim algoritmus - Ugyebár úgy dolgozik, hogy az aktuális fához a vele szomszédos élek közül a legkisebb súlyút veszi be. Prim: BE → ED → BA → BC
155. sor: 194. sor:
# Most az AB élt adjuk hozzá, ez alapján <math>y \ge 1</math>.
# Most az AB élt adjuk hozzá, ez alapján <math>y \ge 1</math>.
# Most a BC élt adjuk hozzá, ez alapján <math>y \ge 3</math>, így végül <math>y \ge 3</math>.
# Most a BC élt adjuk hozzá, ez alapján <math>y \ge 3</math>, így végül <math>y \ge 3</math>.
$$$ Észrevétel/kérdés $$$
Nem vagyok nagy algel tudós, de miért ne lehetne y>=1? Tudomásom szerint, a Prim az mindig a legkisebb olyan élt veszi be ami olyan csúcsba visz ami eddig nem volt a halmazba. Ha pedig nincs igazam, akkor meg y>=2 mivel (AE) súlya 2 és akkor azt kellene, (ha csak a sulyok szerint növekvőt nézzük).
$$$$$$


'''b)''' Kruskal algoritmus - Éleket nagyság szerint sorrendbe rakjuk, és növekvő sorrendben felvesszük a fához az éleket, vigyázva, hogy ne csináljunk kört.
'''b)''' Kruskal algoritmus - Éleket nagyság szerint sorrendbe rakjuk, és növekvő sorrendben felvesszük a fához az éleket, vigyázva, hogy ne csináljunk kört.
172. sor: 217. sor:
##Ha <math>y \ge 3</math>, akkor a DC oldal kiesik, a maradék 2 élt 2 féleképpen veheti fel, így 12 féleképpen futhat az algoritmus.}}
##Ha <math>y \ge 3</math>, akkor a DC oldal kiesik, a maradék 2 élt 2 féleképpen veheti fel, így 12 féleképpen futhat az algoritmus.}}


===7. Feladat===
===7. Feladat (Van megoldás)===  
Létezik-e olyan X eldöntési probléma, amire X<big>∉</big>NP és X<big>≺</big>SAT egyszerre fennáll?  
Létezik-e olyan X eldöntési probléma, amire X<big>∉</big>NP és X<big>≺</big>SAT egyszerre fennáll?  


179. sor: 224. sor:
|szöveg=
|szöveg=


<big>'''(''Nem kérdezték, csak kieg.'') Eldöntési probléma osztályok? '''<br><br></big>
*'''Tétel:''' Ha X ≺ Y és Y ∈ NP,akkor X ∈ NP
 
*'''Tétel:''' A SAT probléma NP teljes, tehát része NP-nek.
<br>
*A fentiek alapján, mivel X<big></big>NP, a kérdéses X probléma nem létezhet.
[[File:bonyolultsag_elmelet.JPG|390px]]
<br>
 
A '''problémák'''nak lehet több típusú több bemenete, és több típusú több kimenete. Ezeket átfogalmazzuk olyanra, hogy a kimenete egyetlen bit legyen (IGEN / NEM), mert ezen algoritmusok felhasználásával is teljesen jól lehet dolgozni, ugyanakkor könnyebb őket nehézség / bonyolultság szerint osztályozni. Az ilyen 1 bites kimenetű problémákat nevezzük '''eldöntési problémák'''nak. <br><br>
 
Az eldöntési problémákat nehézség / bonyolultság szerint osztályokba soroljuk, ezen osztályok között olyan kapcsolatok vannak mint a halmazoknál; ez a fenti rajzon látszik.<br><br>
 
A '''P osztály'''ba olyan problémák tartoznak, amelyekre ismert olyan algoritmus, ami a bemenet polinomjával megadott idő alatt lefut. Vagyis ha a bemenet '''n''', akkor az algoritmusra azt mondjuk, hogy nagy_ordó(valami), ahol a valami '''n''' egy polinomja, például n négyzet, n köb, három n négyzet meg négy meg nyolc n köb, és ilyesmik. <br><br>
 
Az '''NP osztály'''ba olyan problémák tartoznak, amelyekre (jelenleg) nem ismert polinom idejű (P-beli) algoritmus, de igen válasz esetén létezik hatékony tanúsítvány. Vagyis, adott egy nagy csomó bemenet és van egy kérdés. P-idő alatt nem tudjuk megmondani a választ, de ha valaki megsúgja hogy a válasz IGEN, akkor P-időben meg tudjuk mondani, hogy ez hülyeség vagy nem hülyeség. Ha azt súgják meg hogy NEM, akkor fogalmunk sincs, P-időben nem tudjuk eldönteni hogy hülyeség-e vagy sem. (''Ha így lenne, vagyis igen és nem válasz esetén is P-időben ellenőrizni tudnánk a válasz helyességét, akkor az egész probléma P-beli lenne, hiszen megsúgjuk saját magunknak hogy NEM és ha helyes akkor NEM egyébként igen. Persze ha az IGEN-ről P-időben kiderül hogy hülyeség attól még lehet hogy IGEN, csak éppen nem az a konkrét ami meg lett súgva, hanem egy másik.'') <br><br>
 
A '''coNP osztály''' lényegében ugyanaz mint az NP osztály, csak NEM válaszra. Vagyis (jelenleg) nem ismerünk rá P-beli algoritmust, de ha a válasz NEM, akkor P-időben (hatékonyan) ellenőrizni tudjuk, hogy ez-e a jó válasz vagy sem. Szintén, IGEN válasz esetén semmit sem tudunk mondani P-időben, a fenti okok miatt (ami a zárójelben van). <br><br>
 
Az '''NP nehéz''' osztályba tartozó eldöntési problémák közül bármelyik legalább olyan nehéz, mint bármelyik másik NP-beli eldöntési probléma. Itt jön képbe a Karp-redukció fogalma. Jó dolog sok NP nehéz problémát ismerni, mert akkor ha találunk egy problémát, akkor ha találunk olyan Karp-redukciót, ami azt mutatja, hogy ez a probléma visszavezethető egy közismert NP nehéz problémára, akkor a mi ismeretlen problémánk is NP nehéz lesz. Ez azért van, mert a Karp-redukció tranzitív művelet, továbbá a Karp-redukcónál használt f függvény P-beli, amit kétszer egymás után alkalmazva is még mindig P-beli lesz ez a dolog (az inputok átalakítása). <br><br>
 
Az '''NP teljes''' problémák azok, amik NP nehezek és NP-beliek is egyszerre. A fenti dolog ide is érvényes, vagyis jó dolog ha sok nevezetes NP teljes problémát ismerünk, mert ha egy ismeretlen problémához találunk egy olyan Karp-redukciót, ami alapján az ismeretlen problémánkat visszavezethetjük egy közismert NP teljes problémára, akkor az ismeretlen problémánkról is kiderült, hogy NP teljes. <br><br>
 
<big>'''(''Nem kérdezték, csak kieg.'') Karp-redukció?'''<br><br></big>
Van egy olyan gépünk, ami kizárólag B problémát tudja megoldani. Nekünk viszont A problémánk van. Ekkor ha szerencsénk van, akkor fogunk találni egy olyan Karp-redukciót, hogy A<big>≺</big>B. Ennek persze vannak feltételei. Az A eldöntési probléma inputját át kell alakítani B eldöntési probléma inputjává, és meg is kell adni ezt a függvényt, nevezzük el ezt a függvényt f függvénynek. Feltétel, hogy f függvény polinom időben kiszámolható legyen, és ezt be is kell bizonyítani. Továbbá azt is be kell bizonyítani, hogy amennyiben a normális inputra A azt válaszolná, hogy IGEN, akkor az f(normális input)-ra a B szintén ugyanezt válaszolná (és ugyanezt be kell bizonyítani NEM válaszra is). Magyarul a B dolgot megoldó gépet megerőszakoljuk hogy A problémát is hajlandó legyen megoldani. <br><br>
 
Ebből következik néhány dolog. Például az, hogy B legalább olyan nehéz probléma, mint A. Ha például B NP-teljes, akkor A is az. Ha B NP-nehéz, akkor A is az. Ha B coNP-beli, akkor A is az. Ez miért van? Hát azért, mert polinom időben át lehet alakítani az A problémát B-vé. Ezt indirekten könnyen lehet bizonyítani. Indirekt tegyük fel, hogy annak ellenére hogy B probléma NP-teljes és létezik egy olyan Karp-redukció ami A problmémát átalakítja B-vé, szóval mindezek ellenére A probléma P-beli. Ekkor A problémát egy polinom idejű f függvénnyel simán átalakítjuk B problémává, erről szól ugye a Karp-redukció. Ezek után ha bármikor B problémát akarnánk megoldani, akkor az f-függvény fordítva végrehajtásával a B inputját átalakítjuk A inputjává, megoldjuk az A problémát polinom időben, és kész is. Ez ellentmondás mivel B-ről azt mondtuk hogy NP-teljes. A másik érdekesség, hogy ha például egy NP-teljes vagy NP-nehéz problémáról kiderülne hogy P-beli, akkor az összes NP-beliről kiderülne hogy P-beli, mivel az NP-nehéz definíciója az, hogy legalább olyan nehéz mint bármely tetszőleges NP-beli. <br><br>
 
Még egy fontos megjegyzés a Karp-redukcióhoz: ugye A problémát akarjuk megoldani, de csak B-t megoldó gépünk van. Az egyik gyakorlaton elhangzott, és fontos tudni, hogy a B-t megoldó gépet az A eldöntési probléma megoldásához csak EGYSZER használhatjuk. Azért mert a Karp-redukció az ilyen.<br><br>
 
<big>'''(''Nem kérdezték, csak kieg.'') SAT probléma? '''<br><br></big>
todo <br><br>
 
<big>'''A feladat megoldása: '''<br><br></big>
todo <br><br>


}}
}}
218. sor: 234. sor:
*'''Input:''' irányítatlan G gráf<br>
*'''Input:''' irányítatlan G gráf<br>
*'''Kérdés:''' Igaz-e, hogy G-ben vagy van Hamilton-út vagy G 3 színnel színezhető?<br>  
*'''Kérdés:''' Igaz-e, hogy G-ben vagy van Hamilton-út vagy G 3 színnel színezhető?<br>  
<br><br>


{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=
Legyen az eldöntési probléma neve A<br>
G ∈ A akkor, ha G∈3SZÍN vagy G∈H<br>
Adjunk 3SZÍN < A  Karp redukciót, ekkor mivel a 3SZÍN probléma NP-teljes az A is NP-teljes lesz.<br><br>


'''(''Nem kérdezték, csak kieg.'') P osztály?'''<br><br>
G' legyen az a gráf, amelyet úgy kapunk, hogy G-t kiegészítünk egy 3 csúcsból álló körrel. Mivel G'-ben biztosan nincs Hamilton-út ( Nem összefüggő ), ezért G' ∈ A akkor és csakis akkor, ha G ∈ 3SZÍN
todo <br><br>
}}
 
'''(''Nem kérdezték, csak kieg.'') NP-teljes osztály? '''<br><br>
todo <br><br>
 
'''(''Nem kérdezték, csak kieg.'') H-út? '''<br><br>
todo <br><br>
 
'''(''Nem kérdezték, csak kieg.'') 3 színnel színezhetőség problémája? '''<br><br>
todo <br><br>


'''A feladat megoldása: '''<br><br>
[[Kategória:Infoalap]]
todo <br><br>
 
}}

A lap jelenlegi, 2017. július 12., 14:49-kori változata


2013.06.06. vizsga megoldásai

1. Feladat (Van megoldás)

Ebben a feladatban a mélységi bejárással kapcsolatos kérdésekre kell válaszolni.

  • (a) Adja meg a keresztél definícióját!
  • (b) A mélységi bejárás során hogyan lehet a mélységi és a befejezési számok alapján felismerni a keresztéleket? Vizsgán megjegyzést fűztek hozzá: irányított gráfokra kell gondolni.
  • (c) Bizonyítsa be, hogy irányítatlan gráf mélységi bejárásánál nincsenek keresztélek!
Megoldás

a)
Tekintsük a G irányított gráf egy mélységi bejárását és a kapott T mélységi feszítő erdőt. Ezen bejárás szerint G egy x → y éle keresztél, ha x és y nem leszármazottjai egymásnak.

b)
msz - mélységi szám
bsz - befejezési szám
Ha és , akkor az x → y egy keresztél.
Media:Algel vizsga 2013tavasz Keresztel 1.png
c)
A b) rész alapján könnyen belátható. Ha lenne keresztél, az azt jelentené, hogy van olyan x → y él, amire fennáll, hogy és , vagyis y-ban előbb jártunk, mint x-ben, és y-nak van befejezési száma. Ennél fogva nem lehet keresztél, hiszen ha lenne, akkor y-ból eljuthattunk volna még x-be, mielőtt befejeztük volna.
Másképpen mondva: Nem fejezhettük volna be y-t anélkül, hogy ne jártunk volna x-ben.

Media:Algel vizsga 2013tavasz Keresztel 2.PNG

2. Feladat (Van megoldás)

Milyen műveletek vannak a nyitott címzésű hash-elésnél? Hogyan kell megvalósítani a keresést, ha a nyitott címzésű hashelésnél kvadratikus maradék próbát használunk?

Megoldás
Kiegészítések a feladat megértéséhez

Mi az a nyitott címzésű hash-elés?

lásd: Hash_tömb

Mi az a kvadratikus maradék próba, nyitott címzésű hash-elésnél?

todo

Nyitott címzésű hash-elés műveletei:

Új elem beszúrása, elem keresése, elem törlése.
A törlés speciális jelzéssel történik.

Keresés megvalósítása nyitott címzésű hash-elés esetén kvadratikus maradék próbánál:

A kvadratikus maradék próba egy álvéletlen próba, ezért másodlagos csomósodáshoz vezethet.
Legyen M egy 4k + 3 alakú prímszám, ahol k egy pozitív egész.
Ekkor a próbasorozat legyen

3. Feladat (Van megoldás)

Adja meg az UNIÓ-HOLVAN adatszerkezet definícióját! (A fákkal való implementálást nem kell leírnia.) Mutassa meg, hogy mikor és hogyan használjuk az UNIÓ és a HOLVAN műveleteket a Kruskal algoritmusban!

Megoldás
Kiegészítések a feladat megértéséhez

Mi az a Kruskal algoritmus?
A Kruskal algoritmust minimális költségű feszítőfák meghatározására használjuk. A piros-kék algoritmus egyik implementációja.
Lényege, hogy a gráf éleit súlyuk szerint nem csökkenő sorrendbe állítja, majd sorban megpróbálja kékre színezni őket.
Ennek az a feltétele, hogy az újonnan kékre színezendő él beszínezése után se legyen kör a kékre színezett élek által alkotott gráfban.
Ha ez mégis kört eredményezne, úgy az él nem kék, hanem piros lesz.

A kékre színezett élek egy minimális összsúlyú feszítőfát adnak.

UNIÓ-HOLVAN adatszerkezet definíciója:

Adott egy véges S halmaz, amelynek egy felosztását (partícióját) akarjuk tárolni.
2 műveletünk van:

UNIÓ(U, V halmazok, amelyek S részhalmazai): S-ből kivesszük az U-t és a V-t, majd hozzáadjuk (unió) U és V unióját.

HOLVAN(v pont, v benne van S-ben): Azt az U halmazt adja meg, amelynek v eleme.

Mikor és hogyan használjuk az UNIÓ és a HOLVAN műveleteket a Kruskal algoritmusban:
A Kruskal algoritmus lelke az UNIÓ-HOLVAN adatszerkezet.
Kezdetben a gráf minden pontja másik részhalmazban van, tehát minden egy pontot tartalmaz.
Az algoritmus elindul a legkisebb súlyú éleken.
Az élek két végpontjára (v és w) megvizsgálja, hogy HOLVAN(v) egyenlő-e HOLVAN(w)-vel.
Ha igen, akkor egy részhalmazban vannak, kört okoznának => piros él lesz.
Ha nem áll fenn az egyenlőség, akkor a (v,w) kék lesz, a két részhalmazt pedig nyugodtan egyesíthetjük (hozzávehetjük az új élet a kék gráfhoz):

UNIÓ(,).

4. Feladat

Pista bácsi fel akar ugrálni egy n hosszú, fekete illetve fehér fokokból álló csigalépcsőn. Legfeljebb k fokot tud ugrani, de arra vigyáznia kell, hogy páros (>=2) sok foknyi ugrás után páratlan sokat és páratlan sok után mindig páros (>=2) sokat ugorjon. Adjon O(nk) lépésszámú algoritmust, amely megmondja, hogy fel tud-e úgy ugrálni a csigalépcső tetejére, hogy csak egyféle színű lépcsőfokot használ. (A lépcső fokai rendszertelenül vannak színezve, a színezést ismerjük.) Vizsgán megjegyzést fűztek hozzá: a talaj és a legteteje nem színes, csak a lépcsők; csak fölfele (előrefele) ugrál, visszafele nem.

Megoldás

todo



5. Feladat (Van megoldás)

A hátizsák probléma órán tanult algoritmusát futtattuk egy konkrét inputon, melyben 3 tárgy szerepel. Mi lehetett ez a konkrét input, ha az alábbi táblázat keletkezett?

0 1 2 3 4 5 6 7
1 0 0 0 0 10 10 10 10
2 0 0 5 5 10 10 15 15
3 0 0 5 5 13 13 18 18
Megoldás

Az egyszerűség kedvéért a súly legyen kg, az érték pedig €.

  1. Az első sor alapján az 1-es csomag értéke €10, súlya 4kg.
  2. A második sor alapján a 2-es csomag értéke €5, súlya 2kg.
  3. A 3. lépésben 2 lehetőségünk van, a 3. csomag értéke vagy 13-5=€8, vagy 13-0=€13.
    1. €8 nem lehet, mert akkor a súlya 2kg lenne, de akkor a [2,3] cellába 8 lenne, nem 5.
    2. Így csak a €13 jöhet szóba, súlya pedig 4kg, ami jó megoldás lesz.
Avagy kicsit gépiesebb megoldás:


Jelölje a táblázat celláját, továbbá a 3. csomag értékét, pedig a súlyát.

Tudjuk, hogy , ami ebben az esetben:

, amiből következik, hogy:

(Átgondolható, hogy a 3. csomag súlya nem lehet 1,2 vagy 3kg).

Tehát végeredményben a megoldás:

  • 1-es csomag (€10, 4kg)
  • 2-es csomag (€5, 2kg)
  • 3-as csomag (€13, 4kg)

6. Feladat (Van megoldás)

Egy irányítatlan, élsúlyozott gráf az alábbi éllistával adott (zárójelben az élsúlyok):

  • (a) Mi lehet x és y értéke, ha tudjuk, hogy az élsúlyok egész számok, és azt is tudjuk, hogy a B csúcsból indított Prim algoritmus az alábbi sorrendben vette be az értékeket: BE, ED, BA, BC. Vizsgán megjegyzést fűztek hozzá: az élsúlyok pozitív egész számok, a pozitív szót kifelejtették véletlenül.
  • (b) Mely éleket és milyen sorrendben választja ki a Kruskal algoritmus? (Ha több megoldás is van, akkor az összeset adja meg!)
Megoldás

Media:Algel vizsga 2013tavasz V2 6.png

a) Prim algoritmus - Ugyebár úgy dolgozik, hogy az aktuális fához a vele szomszédos élek közül a legkisebb súlyút veszi be. Prim: BE → ED → BA → BC

  1. A fához hozzáadjuk a BE élt.
  2. Most az ED élt választottuk. Ez alapján x értéke csak 1 lehet, így . (Feladatból kihagyták, hogy pozitív egészekről van szó, amúgy lehetne.)
  3. Most az AB élt adjuk hozzá, ez alapján .
  4. Most a BC élt adjuk hozzá, ez alapján , így végül .

$$$ Észrevétel/kérdés $$$

Nem vagyok nagy algel tudós, de miért ne lehetne y>=1? Tudomásom szerint, a Prim az mindig a legkisebb olyan élt veszi be ami olyan csúcsba visz ami eddig nem volt a halmazba. Ha pedig nincs igazam, akkor meg y>=2 mivel (AE) súlya 2 és akkor azt kellene, (ha csak a sulyok szerint növekvőt nézzük).

$$$$$$

b) Kruskal algoritmus - Éleket nagyság szerint sorrendbe rakjuk, és növekvő sorrendben felvesszük a fához az éleket, vigyázva, hogy ne csináljunk kört.

1 súlyú - AB, BE, ED

2 súlyú - AE

3 súlyú - BC, AD, EC (és DC, ha )

Az összes megoldás:

  1. Az 1 súlyú éleket féleképpen veheti fel az algoritmus (nem lehet belőlük kört csinálni, így itt nincsen para).
  2. Utána megpróbálná felvenni az AE élt, de azzal egy kört kapna, így nem veszi fel. Az AD éllel szintén így járna (~ezeket kéne pirosra színezni, ha olyan lenne a feladat).
  3. Maradtak a BC, EC és DC oldalak.
    1. Ha , akkor ezeket szintén 6 féleképpen veheti fel, tehát összesen 36 féleképpen futhat az algoritmus.
    2. Ha , akkor a DC oldal kiesik, a maradék 2 élt 2 féleképpen veheti fel, így 12 féleképpen futhat az algoritmus.

7. Feladat (Van megoldás)

Létezik-e olyan X eldöntési probléma, amire XNP és XSAT egyszerre fennáll?

Megoldás
  • Tétel: Ha X ≺ Y és Y ∈ NP,akkor X ∈ NP
  • Tétel: A SAT probléma NP teljes, tehát része NP-nek.
  • A fentiek alapján, mivel XNP, a kérdéses X probléma nem létezhet.

8. Feladat

P-ben van vagy NP-teljes az alábbi eldöntési probléma:

  • Input: irányítatlan G gráf
  • Kérdés: Igaz-e, hogy G-ben vagy van Hamilton-út vagy G 3 színnel színezhető?
Megoldás

Legyen az eldöntési probléma neve A
G ∈ A akkor, ha G∈3SZÍN vagy G∈H
Adjunk 3SZÍN < A Karp redukciót, ekkor mivel a 3SZÍN probléma NP-teljes az A is NP-teljes lesz.

G' legyen az a gráf, amelyet úgy kapunk, hogy G-t kiegészítünk egy 3 csúcsból álló körrel. Mivel G'-ben biztosan nincs Hamilton-út ( Nem összefüggő ), ezért G' ∈ A akkor és csakis akkor, ha G ∈ 3SZÍN