„KoopKerdesekZHOssz03” változatai közötti eltérés

Új oldal, tartalma: „{{GlobalTemplate|Infoszak|KoopKerdesekZHOssz03}} '''Mi az alapgondolata az Ortogonal Least Square (OLS) eljárásnak? Milyen hálócsaládnál alkalmazható és mire s…”
 
aNincs szerkesztési összefoglaló
 
(3 közbenső módosítás, amit 2 másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{GlobalTemplate|Infoszak|KoopKerdesekZHOssz03}}
{{GlobalTemplate|Infoszak|KoopKerdesekZHOssz03}}


'''Mi az alapgondolata az Ortogonal Least Square (OLS) eljárásnak? Milyen hálócsaládnál alkalmazható és mire szolgál?'''
'''Mi az alapgondolata az Orthogonal Least Square (OLS) eljárásnak? Milyen hálócsaládnál alkalmazható és mire szolgál?'''
* Alapvetően RBF kapcsán esett róla szó.
* Alapvetően RBF kapcsán esett róla szó.
* "Az ortogonális legkisebb négyzetes hibájú (OLS) eljárás iteratív módon választ középpontokat úgy, hogy közben figyelembe veszi a háló képességét is. Ez azt jelenti, hogy a háló méretét lépésről lépésre növeljük, újabb és újabb bázisfüggvények bekapcsolásával egészen addig, amíg megfelelő teljesítőképességet el nem érünk."
* "Az ortogonális legkisebb négyzetes hibájú (OLS) eljárás iteratív módon választ középpontokat úgy, hogy közben figyelembe veszi a háló képességét is. Ez azt jelenti, hogy a háló méretét lépésről lépésre növeljük, újabb és újabb bázisfüggvények bekapcsolásával egészen addig, amíg megfelelő teljesítőképességet el nem érünk."
8. sor: 8. sor:
* R heurisztikus szórás választás: általában elég tág határok közt változtatható a tanulási képesség rontása nélkül.. Jól használható az adott középpontú bázisfüggvény szórásának, ha vesszük a középponthoz legközelebbi R (R=2-3) másik középpontot, és ezek távolságainak átlagát számoljuk. Ha mindegyik függvényhez azonos szórást akarunk használni, erre is használható a fenti kifejezés (véletlenszerűen kijelölve egy középpontot).  
* R heurisztikus szórás választás: általában elég tág határok közt változtatható a tanulási képesség rontása nélkül.. Jól használható az adott középpontú bázisfüggvény szórásának, ha vesszük a középponthoz legközelebbi R (R=2-3) másik középpontot, és ezek távolságainak átlagát számoljuk. Ha mindegyik függvényhez azonos szórást akarunk használni, erre is használható a fenti kifejezés (véletlenszerűen kijelölve egy középpontot).  
* Végül mind a középpontok, mind a szórások meghatározására alkalmazhatóak az ellenőrzött tanítási módszerek, pl. gradiens alapú keresés, viszont fontos megjegyezni, hogy például a szórás hibafelülete nem kvadratikus, így érvényes minden rá, ami az MLP nem kvadratikus hibafelületére.
* Végül mind a középpontok, mind a szórások meghatározására alkalmazhatóak az ellenőrzött tanítási módszerek, pl. gradiens alapú keresés, viszont fontos megjegyezni, hogy például a szórás hibafelülete nem kvadratikus, így érvényes minden rá, ami az MLP nem kvadratikus hibafelületére.
Annyit tennék még itt hozzá, hogy az OLS azon kívül, hogy iteratívan választ újabb középpontokat, közbeiktat egy ortogonalizáló lépést is. Ez ahhoz kell, hogy a kiválasztott középpontok minél inkább korrelálatlanok legyenek, vagyis minél inkább függetlenül szóljanak bele egymástól a kimenetbe (ugye az ortogonalitás annyit tesz, hogy a skaláris szorzatuk 0, vagyis korrelálatlanok).


'''Mit nevezünk túltanulásnak, milyen következménye van, és hogyan lehet védekezni ellene? (minden ismert ellenszert mutasson be)'''
'''Mit nevezünk túltanulásnak, milyen következménye van, és hogyan lehet védekezni ellene? (minden ismert ellenszert mutasson be)'''
20. sor: 22. sor:
Keresztvalidáció vagy más néven keresztkiértékelés: A keresztvalidáció alapvetően azt használja fel, hogy a mintaponthalmazunkat 3 részre osztjuk. A tanítópontok, a kiértékelő pontok, és a tesztelő pontok. A tanítópontok egyértelmű, hogy mit jelent, a kiértékelő pontokkal értékeljük tanítás közben a hálót, vagyis közvetetten befolyásolja a tanítást. A tesztelő pontokat csak a tanítás végén használjuk a tanított háló értékelésére, ezért ezek még közvetetten sem befolyásolják a tanítást. Ez mind szép és jó, de a keresztvalidáció akkor jön szóba, hogyha kevés tanítópontunk van, és nincs erőforrásunk 3 részre osztani, ekkor hogy idézzek: "Ennek során a rendelkezésre álló mintapontokat véletlenszerűen osztjuk k diszjunkt részhalmazra, majd k-1 részhalmazt tanításra, a maradék részhalmazt meg kiértékelésre használjuk. Az eljárást megismételjük az összes részhalmazra úgy, hogy a tanító pontok közül mindig más-más részhalmazt hagyunk ki"..." A hálózat eredő minősítését az egyes kiértékelések átlagaként nyerjük". Hátránya, hogy sokat kell számolni, előnye, hogy kevés tanítópontnál is jó eredményt ad.
Keresztvalidáció vagy más néven keresztkiértékelés: A keresztvalidáció alapvetően azt használja fel, hogy a mintaponthalmazunkat 3 részre osztjuk. A tanítópontok, a kiértékelő pontok, és a tesztelő pontok. A tanítópontok egyértelmű, hogy mit jelent, a kiértékelő pontokkal értékeljük tanítás közben a hálót, vagyis közvetetten befolyásolja a tanítást. A tesztelő pontokat csak a tanítás végén használjuk a tanított háló értékelésére, ezért ezek még közvetetten sem befolyásolják a tanítást. Ez mind szép és jó, de a keresztvalidáció akkor jön szóba, hogyha kevés tanítópontunk van, és nincs erőforrásunk 3 részre osztani, ekkor hogy idézzek: "Ennek során a rendelkezésre álló mintapontokat véletlenszerűen osztjuk k diszjunkt részhalmazra, majd k-1 részhalmazt tanításra, a maradék részhalmazt meg kiértékelésre használjuk. Az eljárást megismételjük az összes részhalmazra úgy, hogy a tanító pontok közül mindig más-más részhalmazt hagyunk ki"..." A hálózat eredő minősítését az egyes kiértékelések átlagaként nyerjük". Hátránya, hogy sokat kell számolni, előnye, hogy kevés tanítópontnál is jó eredményt ad.
''Változatai?''
''Változatai?''
*A kereszt kiértékelést a neurális hálók tanításánál alkalmazhatjuk. Ilyenkor egy algoritmus alapján felosztjuk a rendelkezése álló mintapontjainkat K db halmazra. Majd ebből a K halmazból K-1 halmaz pontjait tanítópontként felhasználjuk és a maradék 1 db halmaz pontjait pedig tesztpontként alkalmazzuk. Az eljárást addig kell ismételni, amíg minden halmaz nem szerepelt teszthalmazként. Az eljárást így K sokszor kell megismételni. De előnyös, mert így K db tanítást történik, és mindig olyan teszthalmazon végezzük el a tesztelést, majd az adott tanítási ciklusban nem vett részt csak a feltehetően a korábbiban. Így hatékonyabban mérhető a háló általánosító képessége.
*A keresztvalidáció a kereszt kiértékelés speciális esete. Ebben az esetben egyetlenegy tanítási folyamat történik. A tanítás eredményét az elkülönített tesztpontokon teszteljük. Ennél az eljárásnál is először természetesen fel kell osztanunk a rendelkezésre álló mintapontokat tanító és teszt mintákra. A keresztvalidáció bármilyen típusú tanítási eljárásnál használható. Ha többször szeretnénk tanítani a hálót, akkor mindig más mintapontokat kell kijelölni tesztpontoknak.




33. sor: 38. sor:
'''Mit nevezünk lokális és mit globális tanulásnak? Van-e előnye egyiknek a másikkal szemben? Az ismert hálók közül melyek a globális és melyek a lokális tanulási hálók és miért?'''
'''Mit nevezünk lokális és mit globális tanulásnak? Van-e előnye egyiknek a másikkal szemben? Az ismert hálók közül melyek a globális és melyek a lokális tanulási hálók és miért?'''
* Globális tanulás: Minden tanítóponton a tanulás kihat a teljes tartományra, vagyis ha tanítunk egy pontot egy MLP-nek, akkor az megfogja változtatni az értékét egy nagyon távoli bemenetnek is a kimenetét. Ilyenek az MLP, és az RBF, de csak olyan függvény esetén melynek a kimenete a teljes bemeneten érvényes, vagyis egy közepes szórású Gauss függvény már nem fejti ki mindenhol a hatását.
* Globális tanulás: Minden tanítóponton a tanulás kihat a teljes tartományra, vagyis ha tanítunk egy pontot egy MLP-nek, akkor az megfogja változtatni az értékét egy nagyon távoli bemenetnek is a kimenetét. Ilyenek az MLP, és az RBF, de csak olyan függvény esetén melynek a kimenete a teljes bemeneten érvényes, vagyis egy közepes szórású Gauss függvény már nem fejti ki mindenhol a hatását.
* Lokális tanulás: Leginkább a globális tanulás ellentettje, vagyis egy tanítópont csak véges területen fejti ki a hatását, így képesek vagyunk lokális tanulásra. Jó példa erre a XOR RBF-el való tanítása. Ilyenek a CMAC, az SVM, és az RBF is bizonyos paraméterek mellet.
* Lokális tanulás: Leginkább a globális tanulás ellentettje, vagyis egy tanítópont csak véges területen fejti ki a hatását, így képesek vagyunk lokális tanulásra. Jó példa erre a XOR RBF-el való tanítása. Ilyenek a CMAC, az SVM, és az RBF is bizonyos paraméterek mellett.


Itt megjegyeznék, hogy Horváth Gábor meglepetten mondta, hogy sokan írták azt, ami a docx-ben van, és az teljesen hülyeség, amit fentebb leírtam az 6/6 pontot ért.
Itt megjegyeznék, hogy Horváth Gábor meglepetten mondta, hogy sokan írták azt, ami a docx-ben van, és az teljesen hülyeség, amit fentebb leírtam az 6/6 pontot ért.
-- [[RynkiewiczAdam|Tsiga]] - 2012.05.16.
-- [[RynkiewiczAdam|Tsiga]] - 2012.05.16.


--asztalosdani 2013. június 6., 09:35 (UTC)


[[Category:Infoszak]]
[[Category:Infoszak]]
A lap eredeti címe: „https://vik.wiki/KoopKerdesekZHOssz03