„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

A VIK Wikiből
Nincs szerkesztési összefoglaló
 
(96 közbenső módosítás, amit 32 másik szerkesztő végzett, nincs mutatva)
10. sor: 10. sor:


Ha esetleg a LATEX ismeretének hiánya tartana csak vissza a gyűjtemény bővítésétől, akkor látogass el a [[Segítség:Latex]] és a [[Segítség:LaTeX példák]] oldalakra. Ezeken minden szükséges információt meglelsz egy helyen. Jól használható még ez az [http://www.codecogs.com/latex/eqneditor.php Online LATEX editor] is, ahol real time láthatod amit írsz, valamint gyorsgombok vannak a legtöbb funkciókra. Akát ott is megírhatod a képleteket, majd egyszerűen bemásolod ide őket.
Ha esetleg a LATEX ismeretének hiánya tartana csak vissza a gyűjtemény bővítésétől, akkor látogass el a [[Segítség:Latex]] és a [[Segítség:LaTeX példák]] oldalakra. Ezeken minden szükséges információt meglelsz egy helyen. Jól használható még ez az [http://www.codecogs.com/latex/eqneditor.php Online LATEX editor] is, ahol real time láthatod amit írsz, valamint gyorsgombok vannak a legtöbb funkciókra. Akát ott is megírhatod a képleteket, majd egyszerűen bemásolod ide őket.
De ha még ez se megy, akkor egyszerűen nézzél meg egy már fent lévő feladatot, hogy ott hogy vannak megoldva a speciális karakterek.


{{noautonum}}
{{noautonum}}
274. sor: 275. sor:
}}
}}


=== 24. Feladat: Elektródarendszer energiája ===
Két elektródából és földből álló elektródarendszer föld- és főkapacitásai: <math>C_{10}, C_{20}, C_{12}</math>. Az elektródák potenciálja <math>\varphi_{1}, \varphi_{2}</math> a föld potenciálját válasszuk nullának: <math>\varphi_{0}=0</math>.
Mekkora az elektródarendszerben tárolt elektrosztatikus energia?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
[[File:Terek_24_Feladat.PNG | 500px]]
Az elektródarendszerben tárolt teljes elektrosztatikus energia a föld- és főkapacitásokban tárolt összenergiával egyezik meg. Egy kondenzátor elektrosztatikus energiája:
<math>
w_e = { 1 \over 2 } \sum_k { \Phi_k Q_k} =
{ 1 \over 2 } \left( \Phi^+ Q + \Phi^- (-Q) \right) =
{ 1 \over 2 } Q \left( \Phi^+ - \Phi^- \right) =
{ 1 \over 2 } Q U =
{ 1 \over 2 } (CU) U =
{ 1 \over 2 } C U^2
</math>
Ezt felhasználva a három kapacitásban tárolt összenergia:
<math>
W_e =  \frac{1}{2}C_{12}(\varphi _{1}-\varphi _{2})^{2}+\frac{1}{2}C_{10}(\varphi _{1})^{2}+\frac{1}{2}C_{20}(\varphi _{2})^{2}
</math>
}}


===26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása ===
===26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása ===
302. sor: 334. sor:
}}
}}


=== 28. Feladat: Gömb kapacitása a végtelenhez képest ===
=== 27. Feladat: R sugarú egyenletesen töltött gömb D tere ===


Levegőben áll egy <math>20cm</math> sugarú fémgömb, amelyet egyenletes <math>3cm</math> vastagságú <math>4.5</math> relatív dielektromos állandójú szigetelő réteg borít.  
Egy R sugarú gömb egyenletes <math>\rho</math> térfogati töltéssűrűséggel töltött.


Adja meg a gömb kapacitását a végtelen távoli térre vonatkoztatva!
Adja meg az elektromos eltolás nagyságát a középpontól 2R távolságban.


{{Rejtett
{{Rejtett
312. sor: 344. sor:
|szöveg=
|szöveg=


Legyen <math>r_1</math> csak a fémgömb és <math>r_2</math> a teljes golyó sugara, valamint <math>r_0=\infty</math>.
Írjuk fel a Gauss-törvényt egy zárt, <math>r > R</math> sugarú, <math>A</math> felületű gömbre, melynek középpontja egybeesik a töltött gömb középpontjával:
 
<math>\oint_{A} \vec{D} \; \mathrm{d} \vec{s} = \int_{V} \rho \; \mathrm{d}v</math>
 
<math>\oint_{A} \vec{D} \; \mathrm{d} \vec{s} = \rho \cdot {4 R^3 \pi \over 3}</math>


Szimmetria okokból az elektromos eltolásvektorok a gömb felületének minden pontjában sugárirányúak, azaz párhuzamosak a felület normálisával, tehát a felületintegrál szorzássá egyszerűsödik.


<math>\vec{D}(r) \cdot 4 r^2 \pi = \rho \cdot {4 R^3 \pi \over 3}</math>


Ekkor az elektromos térerősség:
<math>\vec{D}(r) = { \rho R^3 \over 3} \cdot {1 \over r^2} \cdot \vec{e}_r</math>


<math>
<math>\vec{D}(2R) = { \rho R \over 12} \cdot \vec{e}_r</math>
E(r) =
 
}}
 
=== 28. Feladat: Gömb kapacitása a végtelenhez képest ===
 
Levegőben áll egy <math>20cm</math> sugarú fémgömb, amelyet egyenletes <math>3cm</math> vastagságú <math>4.5</math> relatív dielektromos állandójú szigetelő réteg borít.
 
Adja meg a gömb kapacitását a végtelen távoli térre vonatkoztatva!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Legyen <math>r_1</math> csak a fémgömb és <math>r_2</math> a teljes golyó sugara, valamint <math>r_0=\infty</math>.
 
 
 
Ekkor az elektromos térerősség:
 
<math>
E(r) =
\begin{cases}
\begin{cases}
  {\frac Q {4\pi\varepsilon_0} \cdot \frac 1 {r^2} }, & \text{ha }r>r_2 \\
  {\frac Q {4\pi\varepsilon_0} \cdot \frac 1 {r^2} }, & \text{ha }r>r_2 \\
331. sor: 389. sor:


<math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math>
<math>\varphi(r)=\int_{r_0}^{r_1}E(r)dr=\int_{r_0}^{r_2}E(r)dr+\int_{r_2}^{r_1}E(r)dr=\frac Q {4\pi{\varepsilon_0}}\frac 1 {r_2}+\frac Q {4\pi\varepsilon}\left(\frac 1 {r_1} -\frac 1 {r_2}\right)=\frac Q {4\pi{\varepsilon_0}} \cdot \left(\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)\right)</math>
/*Szerintem rosszak az integrálási határok, fel vannak cserélve és így negatív eredményt kapunk.*/


Felhasználva a <math>C=\frac Q U</math> formulát:
Felhasználva a <math>C=\frac Q U</math> formulát:


<math>
<math>
C=4\pi{\varepsilon_0} \cdot \left(\frac 1 {\frac 1 {r_2} + \frac 1 {\varepsilon_r}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)}\right) = 24.78pF
C=4\pi{\varepsilon_0} \cdot \left(\frac 1 {\frac 1 {r_2} + \frac 1 {\varepsilon_{_{_r}}}\left(\frac 1 {r_1} - \frac 1 {r_2}\right)}\right) = 24.78pF
</math>
</math>




/*<math>\varepsilon_r</math> Nem viselkedik valami jól az utolsó képletben.*/
/*<math>\varepsilon_r</math> Nem viselkedik valami jól az utolsó képletben.*/
/*Kókányoltam rajta egy kicsit, de még mindig rossz*/




347. sor: 408. sor:
== Stacionárius áramlási tér ==
== Stacionárius áramlási tér ==


=== 34. Feladat: Áramsűrűség meghatározása egy felület másik oldalán ===


=== 36. Feladat: Pontszerű áramforrás környezetében a teljesítménysűrűség meghatározása ===
Adott <math>Z=0</math> sík. A <math>\sigma</math> vezetőképesség: <math>Z>0</math> esetén <math>\sigma = \sigma^+</math> és <math>Z<0</math> esetén <math>\sigma = \sigma^-</math>. Adott <math>J_1 = J_1(x) \cdot e_x + J_1(z) \cdot e_z</math> áramsűrűség a sík egyik oldalán.


Adott egy pontszerű <math>I=10A</math> áramerősségű pontszerű áramforrás egy <math>\sigma =200 {S \over m}</math> fajlagos vezetőképességű közegben.<br/>Határozza meg a teljesítménysűrűséget a forrástól <math>R=3m</math> távolságban.
Határozza meg az áramsűrűség függvényt a felület másik oldalán!


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
A feladat megoldásához a stacionárius áramlási tér - elektrosztatika betűcserés analógiát fogjuk felhasználni.
<!-- Szerintetek ez jó? Mivel stacionárius áramlási tér van, ezért a a felületen töltés nem halmozódhat fel. Így a J normálisoknak meg kellene egyeznie! Nem? 2019.01.10 -->
Tudjuk, hogy <math >E = { J \over \sigma } </math>


Ehhez először szükségünk van a pontszerű töltés által keltett elektrosztatikus mező elektromos eltolásvektorának kifejezésére.<br/>Felírva a Gauss-törvényt egy <math>V</math> térfogatú <math>A</math> felületű gömbre, melynek középpontja a ponttöltés:
Továbbá <math>E_{t1} = E_{t2}</math> és <math>D_{n2} = D_{n1} + \sigma </math> (!!! ez itt felületi töltéssűrűség, ami a példában 0), tehát <math>D_{n2} = D_{n1}</math>


<math>\oint_A \vec{D} \; \mathrm{d} \vec{s}=\int_V \rho \; \mathrm{d} V</math>
Ezekből következik, hogy: <math>E_1 = E_2</math>
 
Azaz: <math>{J_1 \over \sigma^-} = {J_2 \over \sigma^+}</math>
 
<math>J_2 = J_1(x) \cdot e_x\cdot {\sigma^+ \over \sigma^-} + J_1(z) \cdot e_z \cdot {\sigma^+ \over \sigma^-}</math>
}}
 
=== 36. Feladat: Pontszerű áramforrás környezetében a teljesítménysűrűség meghatározása ===
 
Adott egy pontszerű <math>I=10A</math> áramerősségű pontszerű áramforrás egy <math>\sigma =200 {S \over m}</math> fajlagos vezetőképességű közegben.<br/>Határozza meg a teljesítménysűrűséget a forrástól <math>R=3m</math> távolságban.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A feladat megoldásához a stacionárius áramlási tér - elektrosztatika betűcserés analógiát fogjuk felhasználni.
 
Ehhez először szükségünk van a pontszerű töltés által keltett elektrosztatikus mező elektromos eltolásvektorának kifejezésére.<br/>Felírva a Gauss-törvényt egy <math>V</math> térfogatú <math>A</math> felületű gömbre, melynek középpontja a ponttöltés:
 
<math>\oint_A \vec{D} \; \mathrm{d} \vec{s}=\int_V \rho \; \mathrm{d} V</math>


Szimmetria okokból az eltolásvektor erővonali gömbszimmetrikusak lesznek, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:
Szimmetria okokból az eltolásvektor erővonali gömbszimmetrikusak lesznek, így a felületintegrál egy egyszerű szorzássá egyszerűsödik:
462. sor: 543. sor:
}}
}}


== Stacionárius mágneses tér ==
=== 48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek ===
Fel kell bontani két vezetőre(egyik egyenes, a másik egy L alakú lesz), mindkettőn 3A fog folyni. Kiszámolod hogy az egyik meg a másik mekkora mágneses teret hoz létre abban a pontban (Biot-Savart), és a a végén összeadod azt a két értéket (szuperpozíció).
A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget!
(ábra a megoldásnál)


== Stacionárius mágneses tér ==
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


[[File:Terek_szóbeli_feladatok_magnesesfelegyenes.jpg|300px]]
}}


=== 50. Feladat: Két áramjárta vezető közötti erőhatás ===
=== 50. Feladat: Két áramjárta vezető közötti erőhatás ===
550. sor: 641. sor:




=== 57. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
=== 53. Feladat: Két tekercs kölcsönös indukciója toroid vasmagon===
 
A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!<br/>Ha esetleg valaki kihúzná az "igazi" 57. feladatot, akkor írja be ennek a helyére, ezt pedig tegye a lap aljára ? feladatként. Köszi!
 
Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!


Toroid alakú vasmagon egy <math>N_1=300</math> és egy <math>N_2=500</math> menetes tekercs helyezkedik el. Az <math>N_1</math> menetszámú tekercs öninduktivitása <math>L_1=0,9H</math>. Adja meg a két tekercs közötti kölcsönös induktivitás nagyságát!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=


A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!
}}
 
Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
 
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>
 
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:


<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>


<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>


<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>
<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:
<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>
}}


=== 58. Feladat: Toroid tekercs fluxusa és energiája===
=== 58. Feladat: Toroid tekercs fluxusa és energiája===
604. sor: 670. sor:
}}
}}


=== 59. Feladat: Kölcsönös indukciós együttható meghatározása a Biot-Savart törvény segítségével ===


=== 59. Feladat: Kondenzátor dielektrikumában disszipált teljesítmény ===
Egy szabályos kör alakú <math>R</math> sugarú körvezetővel egy síkban, a körvezető középpontjában helyezkedik el egy <math>a</math> oldalhosszúságú négyzet alakú vezető keret. Határozza meg a két vezető keret kölcsönös indukciós együtthatóját a Biot-Savart törvény segítségével, ha <math>a << R</math> !


A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!  
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A kölcsönös indukciós együttható azt mutatja meg, hogy mekkora fluxust hoz létre egy vezető hurok árama egy másik vezető hurokban.
 
Legyen a külső kör alakú vezetőben folyó áram <math>I</math>! Mivel <math>a << R</math>, ezért azt kell meghatározni, hogy ez az <math>I</math> áram mekkora mágneses térerősséget hoz létre a körvezető középpontjában, ahol a négyzetes vezető elhelyezkedik. Ezt a Biot-Savart törvénnyel meg lehet határozni, így megkapjuk <math>L_{1,2}= \frac{\phi_{2}}{I}</math> kölcsönös indukciós együttható értékét.
 
A Biot-Savart törvény : <math>\mathbf{H} = \frac{I}{4\pi }\oint \frac{d\mathbf{l}\times \mathbf{r_{0}}}{r^{2}}</math>, ahol <math>r_{0}</math> az elemi <math>d\mathbf{l}</math> szakaszból a vizsgált pontba mutató egységvektor (fontos, hogy EGYSÉG-vektor, mert ha nem az egységvektorral számolunk, akkor a nevezőben nem négyzetes, hanem köbös a távolság). Mivel a vizsgált pont a körvezető középpontja, így a távolság végig <math>R</math> és a körintegrálás a körvezető keret kerületével való szorzássá egyszerűsödik:
 
<math>\mathbf{H} = \frac{I}{4\pi R^{2} } \cdot 2R\pi</math>
 
<math>\mathbf{H} = \frac{I}{2R}</math>
 
<math>\mathbf{B} = \mu_{0} \mathbf{H}</math>
 
<math>\phi = \int_{A}^{ } \mathbf{B} dA</math>
 
Mivel <math>a << R</math> ezért volt elég a középpontban kiszámolni a térerősséget és a kis négyzetes vezető fluxusát így közelíteni:
 
<math>\phi_{2} = \mathbf{B} a^{2}</math>
 
Végül mindent behelyettesítve: <math>L_{1,2}= \frac{\mu_{0} a^{2}}{2R}</math>
 
}}
 
 
=== ???. Feladat: Kondenzátor dielektrikumában disszipált teljesítmény ===
 
A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls!  
Eddig ez az 59.-es volt, de biztos nem ez a valódi sorszáma, 59. fentebb.


Adott egy kondenzátor, melynek fegyverzetei között egy <math>\sigma=50 {nS \over m}</math> fajlagos vezetőképességű dielektrikum helyezkedik el.
Adott egy kondenzátor, melynek fegyverzetei között egy <math>\sigma=50 {nS \over m}</math> fajlagos vezetőképességű dielektrikum helyezkedik el.
639. sor: 736. sor:
|szöveg=  
|szöveg=  


Az Ampere-féle gerjesztési törvényből következik, hogyha a toroid közepes sugarához sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor. Ez onnét látható, hogy ha veszünk a toroid tekercseléséből egyetlen menetet, akkor arra igaz, hogy a menet minden kis szakaszában folyó áram által keltett mágneses mező a jobbkéz-szabály (I - r - B) szerint a menet síkrája merőleges irányú mágneses térerősségvektort hoz létre.
Az Ampere-féle gerjesztési törvényből következik, hogyha a toroid közepes sugarához sugarához tartozó közepes kerülete mentén integráljuk a mágneses térerősséget, akkor szimmetria okokból, ott mindenütt érintő irányú és azonos nagyságú lesz a mágneses térerősségvektor. Ez onnét látható, hogy ha veszünk a toroid tekercseléséből egyetlen menetet, akkor arra igaz, hogy a menet minden kis szakaszában folyó áram által keltett mágneses mező a jobbkéz-szabály (I - r - B) szerint a menet síkjára merőleges irányú mágneses térerősségvektort hoz létre.


Tehát a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített A területű körlapot összesen N-ször döfi át egy-egy I áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:
Tehát a vonalintegrál egy egyszerű szorzássá egyszerűsödik. Valamint a toroid közepes sugara által kifeszített A területű körlapot összesen N-ször döfi át egy-egy I áramerősségű vezeték, mindannyiszor ugyanabba az irányba. Tehát a második tekercs mágneses téresősségének nagysága:
654. sor: 751. sor:
}}
}}


===62. Feladat: Szolenoid tekercs mágneses indukciója ===
Adott: <math>A=5cm^2</math>, <math>N=1000</math>, <math>L=???</math>, <math>\mu_r =???</math>.
Adja meg a mágneses indukció nagyságát a Szolenoid belsejében!


=== 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia ===
=== 64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia ===
689. sor: 791. sor:
<math>W_m={1 \over 2} \int_V \vec{H} \cdot \vec{B} \; \mathrm{d} V  </math>
<math>W_m={1 \over 2} \int_V \vec{H} \cdot \vec{B} \; \mathrm{d} V  </math>


Mivel homogén közegben <math>\vec{B}=\mu \vec{H}</math>, azaz a vektorok egy irányba mutatnak minden pontban, így a skaláris szorzatuk megegyezik a vektorok nagyságának szorzatával. Azonban a mágneses térerősségvektor nagysága függ a sugártól, ezért célszerűen áttérünk hengerkoordináta-rendszerbe és ott végezzük el az integrálást:
Mivel homogén közegben <math>\vec{B}=\mu \vec{H}</math>, azaz a vektorok egy irányba mutatnak minden pontban, így a skaláris szorzatuk megegyezik a vektorok nagyságának szorzatával. Azonban a mágneses térerősségvektor nagysága függ a sugártól, ezért célszerűen áttérünk hengerkoordináta-rendszerbe és ott végezzük el az integrálást (egy r szorzó bejön a Jacobi-determináns miatt):


<math>W_m={1 \over 2}  \int_0^R \int_{0}^{2\pi} \int_0^1 \mu H^2(r) \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
<math>W_m={1 \over 2}  \int_0^R \int_{0}^{2\pi} \int_0^1 \mu H^2(r) \cdot r \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
{1 \over 2} \mu \int_0^R \int_{0}^{2\pi} \int_0^1 \left({I \over 2R^2\pi} \cdot r \right)^2 \;\mathrm{d}z \mathrm{d}\varphi \mathrm{d}r =  
{1 \over 2} \mu \int_0^R \int_{0}^{2\pi} \int_0^1 \left({I \over 2R^2\pi} \cdot r \right)^2 \cdot r \;\mathrm{d}z \mathrm{d}\varphi \mathrm{d}r =  
{\mu I^2 \over 8 R^4 \pi^2}  \int_0^R \int_{0}^{2\pi} \int_0^1 r^2 \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
{\mu I^2 \over 8 R^4 \pi^2}  \int_0^R \int_{0}^{2\pi} \int_0^1 r^3 \; \mathrm{d} z \mathrm{d} \varphi \mathrm{d} r =
</math>
</math>




::<math>={\mu I^2 \over 8 R^4 \pi^2} \cdot 1 \cdot 2\pi \cdot  \int_0^R r^2 \; \mathrm{d} r =
::<math>={\mu I^2 \over 8 R^4 \pi^2} \cdot 1 \cdot 2\pi \cdot  \int_0^R r^3 \; \mathrm{d} r =
{\mu I^2 \over 4 R^4 \pi} \cdot  \left[ {r^3 \over 3} \right]_0^R=
{\mu I^2 \over 4 R^4 \pi} \cdot  \left[ {r^4 \over 4} \right]_0^R=
{\mu I^2 \over 12 R^4 \pi} \cdot R^3 =
{\mu I^2 \over 16 R^4 \pi} \cdot R^4 =
{\mu I^2 \over 12 R \pi} = {\mu_0 \mu_r I^2 \over 12 R \pi}
{\mu I^2 \over 16 \pi} = {\mu_0 \mu_r I^2 \over 16 \pi}
</math>
</math>


}}
}}


=== 65. Feladat: Koaxiális jellegű vezeték tengelyében a mágneses térerősség ===
=== 65. Feladat: Koaxiális jellegű vezeték tengelyében a mágneses térerősség ===
722. sor: 823. sor:
}}
}}


=== 66. Feladat: Végtelen, egyenes vezető, és vezetőkeret kölcsönös induktivitása. ===
Egy a = 0.05m oldalhosszúságú négyzet hossztengelyétől d = 0.12m távolságban (tehát két oldalával párhuzamosan, kettőre pedig merőlegesen, a vezetőkeret fölött), egy végtelen hosszúságú, <math>I</math> áramot szállító vezeték halad. Határozza meg az egyenes vezető és a vezetőkeret közötti kölcsönös indukció együtthatót!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A vezetőkeret két oldala, amelyek a végtelen hosszú vezetővel párhuzamosak, azonos távol vannak a vezetőkerettől. Mivel a mágneses indukció körkörösen, a jobbkéz-szabály szerint fogja körül a vezetőt, ezért a két átellenes oldalban pont ellenkező előjelű feszültség indukálódik, így kinullázzák egymást. Tehát 0 lesz a kölcsönös indukció.
Kijön számítás alapján is.
}}


== Távvezetékek (TV) ==
== Távvezetékek (TV) ==
785. sor: 894. sor:
}}
}}


 
=== 70. Feladat: Szakadással lezárt TV áram amplitúdó nagysága ===
=== 78. Feladat: Ideális távvezeték állóhullámarányának számítása ===
Egy ideális légszigetelésű TV ismert hullámimpedanciája 500 Ohm. A távvezeték végén a szakadáson mért feszültség amplitúdója <math> U{_{2}}^{} = 180 V </math>. Mekkora a távvezeték végétől <math> x = 500 </math> méterre az áramerősség amplitúdója, ha tudjuk, hogy a frekvencia 1 MHz.
Egy ideális távvezeték mentén a feszültség komplex amplitúdója az <math>U(z) = (3+4j) \cdot e^{-j \beta z} + (2-j) \cdot e^{j \beta z}</math> függvény szerint változik. Adja meg az állóhullámarányt!


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad --> - j*béta*z ) és a reflektált (negatív irányba halad --> + j*béta*z ) komponenseinek komplex amplitúdói:
A megoldás menete: Ideális a TV és légszigetelésű ezért a <math> \beta = \frac{2\pi }{\lambda } </math> és mivel légszigetelésű a vezeték <math> \lambda = \frac{c}{f} </math>.


<math>U^+ = 3+4j</math>
Felírjuk a Heimholtz egyenleteket a TV végére:


<math>U^- = 2-j</math>
<math> U(z=l) = U^{+} * e^{-j\beta l} + U^{-} * e^{j\beta l} </math>
 
<math> I(z=l) = I^{+} * e^{-j\beta l} - I^{-} * e^{j\beta l} </math>


''Megjegyzés:'' A feladat megadható úgy is, hogy U(x) függvényt adják meg. Ekkor a beeső komponenshez (U2+) tartozik a pozitív, a reflektálthoz (U2-) pedig a negatív hatványkitevő!
<math> l = 500m </math>


<math> r = 1 </math>


Kapcsolat a két fajta paraméterezés között:
A reflexiós tényező a távvezeték végén:


<math>U_2^+ = U^+ e^{- \gamma l} \xrightarrow{ idealis TV} U^+ e^{- j \beta l} </math>
<math> r = \frac{U_{2}^{-}}{U_{2}^{+}} = \frac{U^{-} * e^{j\beta l}}{U^{+} * e^{-j\beta l}} </math>


<math>U_2^- = U^- e^{ \gamma l} \xrightarrow{ idealis TV} U^- e^{ j \beta l} </math>
Ebből kifejezve <math> U^{-} = U^{+} * e^{-j2\beta l} </math>


Ezt visszaírva a Heimholtz megoldásába:


Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti "x" paraméterezéssel, majd ebből "z" szerinti paraméterezéssel:
<math> U(z=l) = {U^{+}} * e^{-j\beta l} + U^{+} * e^{-j2\beta l}  = 180V </math>


<math>|r|=\left| {U_{reflektalt} \over U_{beeso}} \right|= \left| {U_2^- \over U_2^+ } \right|=\left| {U^- \over U^+ } e^{j2 \beta l}  \right| = \left| {U^- \over U^+ } \right| =\left| {2-j \over 3+4j } \right| = {1 \over \sqrt{5}} \approx 0.447</math>
Ebből ki tudjuk fejezni <math> U^{+}-t \;\; és \;\; U^{-}-t </math> Amit visszaírva az egyenletbe a további paramétereket megkapjuk az áram amplitúdóját.


}}


Ebből pedig már számolható a távvezeték állóhullámaránya:
=== 72. Feladat: Lecher vezeték hullámimpedanciájának számítása ===
Egy ideális Lecher vezeték hullámimpedanciája kezdetben 400 ohm. Eltávolítjuk egymástól a vezetékpárt, ekkor a vezeték hosszegységre jutó soros impedanciája 1,5-szeresére nő. Mennyi lesz ekkor a vezeték hullámimpedanciája?


<math>\sigma = {1+|r] \over 1-|r| } = {1+0.447 \over 1-0.447 } \approx 2.62</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
A megoldás menete: Mivel ideális a TV, a fázissebesség c, azaz a fénysebesség. Tudjuk, hogy <math>c = \frac{1}{\sqrt{L'\cdot C'}}</math>.
A hullámimpedancia pedig <math>Z_{0} = \sqrt{\frac{L^{'}}{C^{'}}}</math>. Rendezgetéssel ezzel a két képlettel kijön.


}}
}}


=== 73. Feladat: Ideális TV lezárásának számítása ===


=== 81. Feladat: Egyenfeszültséggel gerjesztett TV megadott feszültségű pontjának meghatározása ===
Egy ideális távvezetek hullámimpedanciája <math>Z_{0}=50\Omega</math>. Az állóhullámarány <math>\sigma =3</math>, a TV lezárása egy ''R'' rezisztancia. ''R'' milyen értékeket vehet fel? Ha a lezárást kicseréljük egy ''C'' kondenzátorra, milyen értékűnek válasszuk, hogy az állóhullámarány megmaradjon? (<math>\omega = 10^{5} \frac{1}{s})</math>
 
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: <math>R' = 20 {m \Omega \over m}</math> és <math>G' = 5 { \mu S \over m}</math>. Egy <math>U_0</math> egyenfeszültségű feszültségforrást kapcsolunk rá.
 
Milyen lesz a kialakuló hullámforma a távvezetéken? Határozza meg azt a z távolságot, ahol a feszültség <math>U_0/2</math> lesz!


{{Rejtett
{{Rejtett
830. sor: 945. sor:
|szöveg=
|szöveg=


Először határozzuk meg, hogy milyen lesz a kialakuló hullámforma. Ehhez vegyük a távvezetéken kialakuló idő és helyfüggő feszültségfüggvény általános alakját:
Az állóhullámarány és a reflexiós tényező kapcsolata: <math>\sigma = \frac{1+\left | r \right |}{1-\left | r \right |} = 3</math>


<math>u(t,z)=|U^+| \cdot e^{- \alpha z} \cdot \cos(\omega t - \beta z + \varphi^+) \;+\;
Ebből  <math>\left | r \right | = \frac{1}{2} </math>, tehát <math>r = \pm \frac{1}{2}</math>
|U^-| \cdot e^{ \alpha z} \cdot \cos(\omega t + \beta z + \varphi^-)</math>




Mivel a távvezeték végtelen hosszúságú, így nincs reflektált komponens, tehát a második tag nulla. Továbbá mivel egyenfeszültséggel gerjesztjük a távvezetéket azaz <math>\omega =0</math>, ezért az alant lévő számításból látszik, hogy a terjedési együttható tisztán valós lesz, tehát <math>\beta = 0</math>. Az egyenfeszültségből következik, hogy a <math>\varphi </math> kezdőfázis is zérus. Ezeket mind felhasználva adódik, hogy a koszinusz argumentuma konstans 0, tehát a koszinusz értéke konstans 1.  
Tudjuk, hogy <math>r =  \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{R-Z_{0}}{R+Z_{0}}</math>, kifejezve ''R''-t, adódik, hogy: <math>R = \frac{Z_{0} + rZ_{0}}{1-r}</math>.


Tehát távvezetéken kialakuló feszültség idő- és helyfüggvénye (gyakorlatilag az időtől független lesz):
ha <math>r = \frac{1}{2}</math>, akkor <math>R = 16.67\Omega</math>.


<math>u(t,z)=U_0 \cdot e^{- \alpha z}</math>
ha <math>r = -\frac{1}{2}</math>, akkor <math>R = 150\Omega</math>.




Ebből látszik, hogy a kialakuló hullámforma egy <math>U_0</math>-tól induló a végtelenben exponenciálisan lecsengő görbének felel meg.  
Nézzük, mi történik, ha a távvezetéket egy kondenzátorral zárjuk le:
ez egy kedves becsapós kérdés, mert amennyiben <math>Z_{2} = \frac{1}{j\omega C}</math>, akkor <math>r =  \frac{Z_{2}-Z_{0}}{Z_{2}+Z_{0}} = \frac{\frac{1}{j\omega C}-Z_{0}}{\frac{1}{j\omega C}+Z_{0}}</math>.


A kérdéses "z" távolság meghatározásához, először ki kell számolnunk, hogy mennyi a távvezeték csillapítása (<math>\alpha</math>), feltéve hogy <math>\omega =0</math>, hiszen egyenfeszültséggel gerjesztjük a távvezetéket:
Az állóhullámarány kiszámításánál a relflexiós tényező abszolútértékével kell dolgoznunk, ami egy komplex szám és konjugáltjának hányadosa, ami az <math>r =1</math>-et eredményezi, tehát az állóhullámarány értéke nem maradhat 3 ebben az esetben, vagyis nem létezik a követelményeknek megfelelő kondenzátor.


<math>\alpha=Re\left\{ \gamma \right\}=Re\left\{ \sqrt{(R'+j\omega L')(G'+j\omega C')} \right\}=Re\left\{ \sqrt{R' \cdot G'} \right\}=\sqrt{R' \cdot G'}=\sqrt{0.02 \cdot 5 \cdot 10^{-6}}=3.16 \cdot 10^{-4} \;{1\over m}</math>




Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:


<math>U_0 \cdot e^{-\alpha z}={U_0 \over 2}</math>


<math>e^{-\alpha z}=0.5</math>


<math>-\alpha z=\ln 0.5 \longrightarrow z=-{\ln 0.5 \over \alpha}=-{\ln 0.5 \over 3.16 \cdot 10^{-4}} \approx 2.192 \;km</math>
}}
}}


 
=== 78. Feladat: Ideális távvezeték állóhullámarányának számítása ===
=== 82. Feladat: Ideális távvezeték bemeneti impedanciája ===
Egy ideális távvezeték mentén a feszültség komplex amplitúdója az <math>U(z) = (3+4j) \cdot e^{-j \beta z} + (2-j) \cdot e^{j \beta z}</math> függvény szerint változik. Adja meg az állóhullámarányt!
 
Egy ideális, légszigetelésű <math>l</math> hosszúságú, <math>Z_0</math> hullámimpedanciájú távvezeték vezetett hullámhossza pedig <math>\lambda = 8l</math>
 
Mekkora a távvezeték elején a bemeneti impedancia, ha a távvezeték végén a lezárás egy <math>L={Z_0 \over \omega}</math> induktivitású ideális tekercs?


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad <math>\rightarrow - j \beta z </math> ) és a reflektált (negatív irányba halad <math>\rightarrow + j \beta z </math> ) komponenseinek komplex amplitúdói:


Tudjuk, hogy: <math>\beta = {2 \pi \over \lambda} \longrightarrow  (\beta l)={2 \pi \over \lambda}l ={2 \pi \over 8l}l = {\pi \over 4}  </math>
<math>U^+ = 3+4j</math>


<math>U^- = 2-j</math>


A lezáró tekercs impedanciája: <math>Z_2=j \omega L = j \omega {Z_0 \over \omega}=j Z_0</math>
''Megjegyzés:'' A feladat megadható úgy is, hogy <math>U(x)</math> függvényt adják meg. Ekkor a beeső komponenshez (<math>U_2^+</math>) tartozik a pozitív, a reflektálthoz (<math>U_2^-</math>) pedig a negatív hatványkitevő!




Ezt behelyettesítve az ideális távvezeték bemeneti impedanciájának képletébe, majd egyszerűsítve azt, máris adódik a végeredmény:
Kapcsolat a két fajta paraméterezés között:


<math>U_2^+ = U^+ e^{- \gamma l} \xrightarrow{ idealis TV} U^+ e^{- j \beta l} </math>


<math>
<math>U_2^- = U^- e^{ \gamma l} \xrightarrow{ idealis TV} U^- e^{ j \beta l} </math>
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } =
Z_0 {j Z_0 + j Z_0 tg\left({\pi \over 4}\right) \over Z_0 + j j Z_0 tg\left({\pi \over 4}\right) } =
j Z_0 {1 + tg\left({\pi \over 4}\right) \over 1 - tg\left({\pi \over 4}\right) } =
j Z_0 {1 + 1 \over 1 - 1 } =
j Z_0 \cdot {2 \over 0 } \longrightarrow \infty
</math>




A kapott eredményen nem kell meglepődni. Jelen paraméterek mellett a távvezeték bemeneti impedanciája végtelenül nagy.
Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti <math>x</math> paraméterezéssel, majd ebből <math>z</math> szerinti paraméterezéssel:


}}
<math>|r|=\left| {U_{reflektalt} \over U_{beeso}} \right|= \left| {U_2^- \over U_2^+ } \right|=\left| {U^- \over U^+ } e^{j2 \beta l}  \right| = \left| {U^- \over U^+ } \right| =\left| {2-j \over 3+4j } \right| = {1 \over \sqrt{5}} \approx 0.447</math>




=== 86. Feladat: Számolás az ideális TV lánckarakterisztikájának I. egyenletével===
Ebből pedig már számolható a távvezeték állóhullámaránya:
Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \Omega</math>, hossza pedig <math>\frac{\lambda}{8}</math>. A távvezeték végén adott az áram és a feszültség komplex amplitúdója: <math>2A</math> illetve <math>500V</math>.<br/>Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow  (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 8} = \frac{\pi}{4}</math>


Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:
<math>\sigma = {1+|r] \over 1-|r| } = {1+0.447 \over 1-0.447 } \approx 2.62</math>
 
<math>U_1 = \cos (\beta l) \cdot U_2 \;+\; j \cdot \sin(\beta l) \cdot Z_0 \cdot I_2 =
\cos \left( {\pi \over 4} \right)\cdot500 \;+\; j \cdot \sin \left( {\pi \over 4} \right) \cdot 50 \cdot 2 \approx (354 + j70.7)V</math>


}}
}}


=== 81. Feladat: Egyenfeszültséggel gerjesztett TV megadott feszültségű pontjának meghatározása ===


=== 87. Feladat: Számolás az ideális TV lánckarakterisztikájának II. egyenletével===
Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: <math>R' = 20 {m \Omega \over m}</math> és <math>G' = 5 { \mu S \over m}</math>. Egy <math>U_0</math> egyenfeszültségű feszültségforrást kapcsolunk rá.


Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \; \Omega</math>, hossza pedig <math>\frac{\lambda}{3}</math>. A távvezeték vége szakadással van lezárva, melyen a feszültség komplex amplitúdója <math>j150 \; V</math>.<br/>Határozzuk meg az áramerősség komplex amplitúdóját a távvezeték elején!
Milyen lesz a kialakuló hullámforma a távvezetéken? Határozza meg azt a z távolságot, ahol a feszültség <math>U_0/2</math> lesz!


{{Rejtett
{{Rejtett
917. sor: 1 012. sor:
|szöveg=
|szöveg=


Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 3} = \frac{2\pi}{3}</math>
Először határozzuk meg, hogy milyen lesz a kialakuló hullámforma. Ehhez vegyük a távvezetéken kialakuló idő és helyfüggő feszültségfüggvény általános alakját:
 
<math>u(t,z)=|U^+| \cdot e^{- \alpha z} \cdot \cos(\omega t - \beta z + \varphi^+) \;+\;
|U^-| \cdot e^{ \alpha z} \cdot \cos(\omega t + \beta z + \varphi^-)</math>




Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának második egyenletét, majd behelyettesítünk:
Mivel a távvezeték végtelen hosszúságú, így nincs reflektált komponens, tehát a második tag nulla. Továbbá mivel egyenfeszültséggel gerjesztjük a távvezetéket azaz <math>\omega =0</math>, ezért az alant lévő számításból látszik, hogy a terjedési együttható tisztán valós lesz, tehát <math>\beta = 0</math>. Az egyenfeszültségből következik, hogy a <math>\varphi </math> kezdőfázis is zérus. Ezeket mind felhasználva adódik, hogy a koszinusz argumentuma konstans 0, tehát a koszinusz értéke konstans 1.


<math>I_1 = j \cdot {1 \over Z_0} \cdot \sin (\beta l) \cdot U_2 \;+\; \cos (\beta l) \cdot I_2 =
Tehát távvezetéken kialakuló feszültség idő- és helyfüggvénye (gyakorlatilag az időtől független lesz):
j \cdot {1 \over 50} \cdot \sin \left( \frac{2\pi}{3} \right) \cdot j150 \;+\; \cos \left( \frac{2\pi}{3} \right)\cdot 0 =
-3 \cdot \sin \left( \frac{2\pi}{3} \right) \approx -2.6 \; A </math>


}}
<math>u(t,z)=U_0 \cdot e^{- \alpha z}</math>




=== 88. Feladat: Ideális TV bemeneti impedanciájának helyfüggvénye ===
Ebből látszik, hogy a kialakuló hullámforma egy <math>U_0</math>-tól induló a végtelenben exponenciálisan lecsengő görbének felel meg.  


Egy ideális távvezeték hullámimpedanciája <math>Z_0 = 400 \; \Omega</math>, lezárása pedig egy <math>Z_2 = -j400 \; \Omega</math> reaktanciájú kondenzátor. A távvezeték fázisegyütthatója <math>\beta = 0.2 \; {1 \over m} </math>.
A kérdéses "z" távolság meghatározásához, először ki kell számolnunk, hogy mennyi a távvezeték csillapítása (<math>\alpha</math>), feltéve hogy <math>\omega =0</math>, hiszen egyenfeszültséggel gerjesztjük a távvezetéket:


Adja meg a bemeneti impedanciát a lezárástól való <math>x</math> távolság függvényében.
<math>\alpha=Re\left\{ \gamma \right\}=Re\left\{ \sqrt{(R'+j\omega L')(G'+j\omega C')} \right\}=Re\left\{ \sqrt{R' \cdot G'} \right\}=\sqrt{R' \cdot G'}=\sqrt{0.02 \cdot 5 \cdot 10^{-6}}=3.16 \cdot 10^{-4} \;{1\over m}</math>
Határozza meg, milyen helyeken lesz a bemeneti impedancia értéke 0.


{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


A bemeneti impedancia a hely függvényében egyszerűen megadható, ha az ideális távvezeték bemeneti impedanciájának általános képletében az <math>l</math> hossz helyébe általánosan <math>x</math> változót írunk, ahol <math>x</math> a lezárástól való távolságot jelöli.
Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:


''Megjegyzés:'' Arra az esetre, ha mégis rákérdeznének, hogy ez mégis honnan jött, célszerű lehet átnézni a jegyzetből az ideális távvezeték lánckarakterisztikájának levezetését, csak l helyébe x-et kell írni és ugyanazzal a gondolatmenettel levezethető ez a képlet.
<math>U_0 \cdot e^{-\alpha z}={U_0 \over 2}</math>


<math>Z_{be}(x) = Z_0 \cdot {Z_2 + j Z_0 tg \left( \beta x \right)  \over Z_0 + jZ_2 tg \left( \beta x \right)}</math>
<math>e^{-\alpha z}=0.5</math>


<math>-\alpha z=\ln 0.5 \longrightarrow z=-{\ln 0.5 \over \alpha}=-{\ln 0.5 \over 3.16 \cdot 10^{-4}} \approx 2.192 \;km</math>
}}


A bemeneti impedancia csakis akkor lehet 0, ha a fenti képletben a számláló is szintén 0.


<math>Z_2 + jZ_0 tg \left( \beta x \right) = 0 </math>
=== 82. Feladat: Ideális távvezeték bemeneti impedanciája ===


Egy ideális, légszigetelésű <math>l</math> hosszúságú, <math>Z_0</math> hullámimpedanciájú távvezeték vezetett hullámhossza <math>\lambda = 8l</math>


<math>-j400 + j400 tg \left( 0.2 \cdot x \right) = 0 </math>
Mekkora a távvezeték elején a bemeneti impedancia, ha a távvezeték végén a lezárás egy <math>L={Z_0 \over \omega}</math> induktivitású ideális tekercs?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy: <math>\beta = {2 \pi \over \lambda} \longrightarrow  (\beta l)={2 \pi \over \lambda}l ={2 \pi \over 8l}l = {\pi \over 4}  </math>




<math>tg \left( 0.2 \cdot x \right) = 1 </math>
A lezáró tekercs impedanciája: <math>Z_2=j \omega L = j \omega {Z_0 \over \omega}=j Z_0</math>




::::<math>\updownarrow</math>
Ezt behelyettesítve az ideális távvezeték bemeneti impedanciájának képletébe, majd egyszerűsítve azt, máris adódik a végeredmény:




<math>0.2 \cdot x = {\pi \over 4} + k \cdot \pi</math>
<math>
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } =
Z_0 {j Z_0 + j Z_0 tg\left({\pi \over 4}\right) \over Z_0 + j j Z_0 tg\left({\pi \over 4}\right) } =
j Z_0 {1 + tg\left({\pi \over 4}\right) \over 1 - tg\left({\pi \over 4}\right) } =
j Z_0 {1 + 1 \over 1 - 1 } =
j Z_0 \cdot {2 \over 0 } \longrightarrow \infty
</math>
 


<math>x = 1.25\pi + k \cdot 5\pi \;\;\;\; \left[ m \right] </math>
A kapott eredményen nem kell meglepődni. Jelen paraméterek mellett a távvezeték bemeneti impedanciája végtelenül nagy.


}}
}}


=== 83. Feladat: Ideális távvezeték meddő teljesítménye ===


== Indukálási jelenségek ==
Egy ideális, légszigetelésű <math>l=83.2m</math> hosszúságú, <math>Z_0 = 50\Omega</math> hullámimpedanciájú távvezeték vezetett hullámhossza <math>\lambda = 75\;m</math>. A távvezeték bemenetére egy <math>U = 100V</math> amplitúdójú, <math>\omega</math> körfrekvenciájú feszültséggenerátort kapcsolunk, miközben szakadással zárjuk le a másik oldalt.
 


=== 94. Feladat: Zárt vezetőkeretben indukált áram effektív értéke ===
Mekkora a távvezeték által felvett meddő teljesítmény?


Egy <math>R=5 \Omega</math> ellenállású zárt vezetőkeret fluxusa <math>\Phi(t)=30 \cdot \sin(\omega t) \;mVs</math>, ahol <math>\omega=1 {krad \over s}</math>. Mekkora a keretben folyó áram effektív értéke?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=Az indukálási törvény alapján:
|szöveg=
 
A távvezeték helyettesíthető egyetlen <math>Z_{be}</math> nagyságú impedanciával figyelembe véve azt, hogy a lezáró <math>Z_2</math> impedancia a szakadás miatt végtelen nagyságú.


<math>u_i(t)=-{d\Phi(t) \over dt}=-\omega \cdot 0.03 \cdot \cos(\omega t) =-30 \cdot \cos(\omega t) \;V</math>
<math>
Z_{be}=Z_0 {Z_2 + j Z_0 tg(\beta l) \over Z_0 + j Z_2 tg(\beta l) } \longrightarrow
{ Z_0 \over  j tg(\beta l)}
</math>




Innen a feszültség effektív értéke:
Ezzel a helyettesítéssel már egyszerűen számolható a kapcsolás komplex látszólagos teljesítménye:


<math>U_{eff}={30 \over \sqrt 2} \approx 21.21 \;V</math>
<math>
S = {1 \over 2} U I^* =
{1 \over 2} U { \left( {U \over Z_{be}} \right) }^* =
{1 \over 2} |U|^2 { 1\over Z_{be}^*} =
{1 \over 2} |U|^2 {\left( { j tg(\beta l) \over Z_0} \right)}^* =
-j{1 \over 2} |U|^2 {tg(\beta l) \over Z_0} =
-j{1 \over 2} |U|^2 {tg({2 \pi \over \lambda}l) \over Z_0}
</math>




Az áram effektív értéke pedig:
A távvezeték által felvett meddő teljesítmény a komplex látszólagos teljesítményének imaginárius részével egyezik meg:


<math> I_{eff}={U_{eff} \over R}= {{30 \over \sqrt{2}} \over 5} = {6 \over \sqrt 2} \approx 4.24 \;A</math>
<math>
Q = Im \left\{ S \right\} =  
-{1 \over 2} |U|^2 {tg({2 \pi \over \lambda}l) \over Z_0} =
-{1 \over 2} \cdot 100^2 \cdot {tg({2 \pi \over 75}\cdot 83.2) \over 50} \approx -82.024 \; Var
</math>
}}
}}


=== 85. Feladat: Távvezeték állóhullámaránya ===


=== 95. Feladat: Zárt vezetőgyűrűben indukált áram időfüggvénye ===
Egy távvezeték hullámimpedanciája <math>500 \Omega </math>, a vezeték végén a feszültség és az áram amplitúdója 1kV és 2A. Mit mondhatunk a reflexiós tényezőről? Mekkora a távvezetéken az állóhullámarány lehető legkisebb értéke?


Adott egy <math>R</math> ellenállású vezetőgyűrű a lap síkjában. A gyűrű által határolt mágneses fluxus időfüggvénye: <math>\Phi (t) = \Phi_0 + \Phi_1 \cdot \sin(\omega t)</math>.
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Adja meg a a gyűrűben indukált áram <math>i(t)</math> időfüggvényét, ha a fluxus a papír síkjából kifelé mutató indukció vonalak mentén pozitív értékű.
<math>\frac{1 kV}{2 A} = 500 \Omega</math>. Ez csak az abszolút értéke az impedanciának (amplitúdók voltak csak adottak a fázisok nem). Ebből felírva a két szélső helyzetet(<math>Z_{2} = 500 \Omega </math> vagy <math>Z_{2} = j \cdot 500 \Omega </math>):
Adódik, hogy a reflexiós tényező abszolútértéke 1 és 0 között változik. Ebből pedig behelyettesítve az állóhullámarány képletébe látszik hogy az végtelen és egy között változik. Így annak lehető legkisebb értéke 1.


Volt egy ábra is: A lap síkjában a vezetőgyűrű, a mágneses indukcióvonalak a lap síkjára merőlegesek és a bejelölt áram referenciairánya pedig az óramutató járásával megegyező irányú.
}}


=== 86. Feladat: Számolás az ideális TV lánckarakterisztikájának I. egyenletével===
Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \Omega</math>, hossza pedig <math>\frac{\lambda}{8}</math>. A távvezeték végén adott az áram és a feszültség komplex amplitúdója: <math>2A</math> illetve <math>500V</math>.<br/>Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow  (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 8} = \frac{\pi}{4}</math>


Az indukálási törvény alapján, meghatározható a vezetőgyűrűben indukált feszültség. A Lenz-törvényből adódó NEGATÍV előjelet azonban most hagyjuk el, mivel most előre megadott referenciairányaink vannak. Majd a végén kiokoskodjuk, hogy szükséges-e extra mínuszjel:
Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:


<math>u_i(t)={d\Phi(t) \over dt}= \Phi_1 \cdot \omega  \cdot \cos(\omega t)</math>
<math>U_1 = \cos (\beta l) \cdot U_2 \;+\; j \cdot \sin(\beta l) \cdot Z_0 \cdot I_2 =
 
\cos \left( {\pi \over 4} \right)\cdot500 \;+\; j \cdot \sin \left( {\pi \over 4} \right) \cdot 50 \cdot 2 \approx (354 + j70.7)V</math>
Ebből az áram időfüggvénye: <math>R={U \over I} \longrightarrow i(t)={u_i(t) \over R}={\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>
 
Most nézzük meg, hogy teljesül-e a jelenlegi referenciairányokkal a Lenz-törvény. A Lenz-törvény kimondja, hogy az indukált feszültség iránya olyan kell, hogy legyen, hogy az általa létrehozott áram által keltett mágneses mező akadályozza az indukciót létrehozó folyamatot, jelen esetben a fluxus megváltozását.
 
Vegyük az első negyedperiódusnyi időt. Ilyenkor a mágneses indukcióvektor a lap síkjából kifelé mutat és csökkenő erősségű. Tehát az indukált áramnak olyan mágneses mezőt kell létrehoznia, hogy annak indukcióvektorai az első negyedperiódusban a lap síkjából kifelé mutassanak, hiszen így akadályozzuk a fluxus csökkenését. A kiszámolt áramidőfüggvény az első negyedperiódusban pozitív értékű, tehát egybeesik a megadott referenciairánnyal. Az óramutató járásával megegyező irányba folyó áram a jobb kéz szabály szerint olyan mágneses mezőt hoz létre, melynek indukcióvektorai a lap síkjába befelé mutatnak. Ez pont ellentétes mint amire szükségünk van, tehát szükséges egy korrekciós mínuszjel a referenciairányok miatt.
 
Az indukált áram időfüggvénye tehát: <math>i(t)=-{\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>


}}
}}




=== 98. Feladat: Zárt vezetőhurokban indukált feszültség ===
=== 87. Feladat: Számolás az ideális TV lánckarakterisztikájának II. egyenletével===


Az xy síkon helyezkedik el egy <math>r=3m</math> sugarú, kör alakú, zárt L görbe. A mágneses indukció a térben homogén és z irányú komponense <math>\Delta t=40ms</math> idő alatt <math>B=0.8T</math> értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az L görbe mentén?
Adott egy ideális távvezeték, melynek hullámimpedanciája <math>50 \; \Omega</math>, hossza pedig <math>\frac{\lambda}{3}</math>. A távvezeték vége szakadással van lezárva, melyen a feszültség komplex amplitúdója <math>j150 \; V</math>.<br/>Határozzuk meg az áramerősség komplex amplitúdóját a távvezeték elején!


{{Rejtett
{{Rejtett
1 027. sor: 1 151. sor:
|szöveg=
|szöveg=


Az indukálási törvény alapján:
Tudjuk, hogy: <math>\beta = \frac{2 \pi}{\lambda} \longrightarrow (\beta l)=\frac{2 \pi}{\lambda}\frac{\lambda}{ 3} = \frac{2\pi}{3}</math>
 
 
Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának második egyenletét, majd behelyettesítünk:


<math>u_i=-{d\Phi(t) \over dt}=-A \cdot { dB(t) \over dt}=
<math>I_1 = j \cdot {1 \over Z_0} \cdot \sin (\beta l) \cdot U_2 \;+\; \cos (\beta l) \cdot I_2 =
-r^2\pi \cdot { \Delta B\over \Delta t}=-r^2\pi \cdot {B_2-B_1\over\Delta t}=
j \cdot {1 \over 50} \cdot \sin \left( \frac{2\pi}{3} \right) \cdot j150 \;+\; \cos \left( \frac{2\pi}{3} \right)\cdot 0 =
- 3^2\pi \cdot {0-0.8\over0.04}=565.5 \;V </math>
-3 \cdot \sin \left( \frac{2\pi}{3} \right) \approx -2.6 \; A </math>


}}
}}




=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===
=== 88. Feladat: Ideális TV bemeneti impedanciájának helyfüggvénye ===


Egy hosszú egyenes vezetőtől <math>d=15 m</math> távolságban egy <math>r=0,25 m</math> sugarú kör alakú zárt vezető hurok helyezkedik el. A vezető és a hurok egy síkra illeszkednek, a közeg pedig levegő.
Egy ideális távvezeték hullámimpedanciája <math>Z_0 = 400 \; \Omega</math>, lezárása pedig egy <math>Z_2 = -j400 \; \Omega</math> reaktanciájú kondenzátor. A távvezeték fázisegyütthatója <math>\beta = 0.2 \; {1 \over m} </math>.


Mekkora az indukált feszültség, ha a vezetőben folyó áram <math>50 {A \over \mu s}</math> sebességgel változik.
Adja meg a bemeneti impedanciát a lezárástól való <math>x</math> távolság függvényében.
Határozza meg, milyen helyeken lesz a bemeneti impedancia értéke 0.


{{Rejtett
{{Rejtett
1 046. sor: 1 174. sor:
|szöveg=
|szöveg=


Az indukálási törvény alapján:
A bemeneti impedancia a hely függvényében egyszerűen megadható, ha az ideális távvezeték bemeneti impedanciájának általános képletében az <math>l</math> hossz helyébe általánosan <math>x</math> változót írunk, ahol <math>x</math> a lezárástól való távolságot jelöli.


<math>u_i=-{\mathrm{d}\Phi(t) \over \mathrm{d} t}=-A \cdot { \mathrm{d}B(t) \over \mathrm{d} t}=
''Megjegyzés:'' Arra az esetre, ha mégis rákérdeznének, hogy ez mégis honnan jött, célszerű lehet átnézni a jegyzetből az ideális távvezeték lánckarakterisztikájának levezetését, csak l helyébe x-et kell írni és ugyanazzal a gondolatmenettel levezethető ez a képlet.
-A \mu_0 \cdot { \mathrm{d}H(t) \over \mathrm{d} t}</math>


A hosszú egyenes áramjárta vezető környezetében a mágneses térerősségvektor az Ampere-féle gerjesztési törvénnyel meghatározható. Ha a mágneses térerősséget egy <math>d</math> sugarú zárt <math>L</math> kör mentén integrálunk, amely által kifeszített <math>A</math> területű körlapot a közepén merőlegesen döfi át a vezeték, akkor a vonalintegrál egy egyszerű szorzássá egyszerűsödik:
<math>Z_{be}(x) = Z_0 \cdot {Z_2 + j Z_0 tg \left( \beta x \right)  \over Z_0 + jZ_2 tg \left( \beta x \right)}</math>


<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s}</math>


<math>H \cdot 2d\pi = I \longrightarrow H = {I \over 2d\pi}</math>
A bemeneti impedancia csakis akkor lehet 0, ha a fenti képletben a számláló is szintén 0.


<math>Z_2 + jZ_0 tg \left( \beta x \right) = 0 </math>


Ezt behelyettesítve az indukált feszültség képletébe:


<math>u_i=-A \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
<math>-j400 + j400 tg \left( 0.2 \cdot x \right) = 0 </math>
- r^2 \pi \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- {r^2 \mu_0 \over 2d} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- {0.25^2 \cdot 4\pi \cdot 10^{-7} \over 2 \cdot 15} \cdot 50 \cdot 10^6 \approx -130.9 \; mV
</math>




''Megjegyzés:'' Természetesen ez csak egy jó közelítés, hiszen a vezető keret mentén nem állandó nagyságú a mágneses térerősség változása, mivel az függ a vezetőtől való távolságtól is. Azonban a közepes távolságot véve, csak kismértékű hibát vétünk.
<math>tg \left( 0.2 \cdot x \right) = 1 </math>


::::<math>\updownarrow</math>
<math>0.2 \cdot x = {\pi \over 4} + k \cdot \pi</math>
<math>x = 1.25\pi + k \cdot 5\pi \;\;\;\; \left[ m \right] </math>


}}
}}


== Indukálási jelenségek ==


=== 101. Feladat: Zárt vezetőhurokban indukált feszültség===


Adott egy L zárt görbe a lap síkjában. A mágneses indukcióvonalak a lap síkjára merőlegesek. A görbe által határolt mágneses fluxus időfüggvénye: <math>\Phi(t)=\Phi_0 \cdot {t^2 \over T}, \;\; ha \;\;0<t<T</math>.
=== 94. Feladat: Zárt vezetőkeretben indukált áram effektív értéke ===
 
Mekkora lesz az indukált feszültség nagysága amikor <math>t=T/3</math>?


Egy <math>R=5 \Omega</math> ellenállású zárt vezetőkeret fluxusa <math>\Phi(t)=30 \cdot \sin(\omega t) \;mVs</math>, ahol <math>\omega=1 {krad \over s}</math>. Mekkora a keretben folyó áram effektív értéke?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=Az indukálási törvény alapján:


Az indukálási törvény alapján:
<math>u_i(t)=-{d\Phi(t) \over dt}=-\omega \cdot 0.03 \cdot \cos(\omega t) =-30 \cdot \cos(\omega t) \;V</math>


<math>u_i(t)=-{d \Phi(t) \over dt}= -{2 \Phi_0 \over T} \cdot  t</math>


Innen a feszültség effektív értéke:
<math>U_{eff}={30 \over \sqrt 2} \approx 21.21 \;V</math>


Behelyettesítve a <math>t=T/3</math> értéket:


<math>u_i\left(t= {T \over 3} \right)= -{2 \Phi_0 \over T} \cdot {T \over 3}=-{2\over 3} \Phi_0</math>
Az áram effektív értéke pedig:


<math> I_{eff}={U_{eff} \over R}= {{30 \over \sqrt{2}} \over 5} = {6 \over \sqrt 2} \approx 4.24 \;A</math>
}}
}}




== Elektromágneses síkhullám jó vezetőben ==
=== 95. Feladat: Zárt vezetőgyűrűben indukált áram időfüggvénye ===


Adott egy <math>R</math> ellenállású vezetőgyűrű a lap síkjában. A gyűrű által határolt mágneses fluxus időfüggvénye: <math>\Phi (t) = \Phi_0 + \Phi_1 \cdot \sin(\omega t)</math>.


=== 105. Feladat: Hengeres vezetőben adott mélységben a térerősség amplitúdója és fázisa ===
Adja meg a a gyűrűben indukált áram <math>i(t)</math> időfüggvényét, ha a fluxus a papír síkjából kifelé mutató indukció vonalak mentén pozitív értékű.


Egy <math>r</math> sugarú hengeres vezető anyagban a behatolási mélység <math>\delta<<r</math>. A henger felszínén az elektromos térerősség amplitúdója <math>E_0</math>, kezdőfázisa pedig <math>0 \; rad</math>.
Volt egy ábra is: A lap síkjában a vezetőgyűrű, a mágneses indukcióvonalak a lap síkjára merőlegesek és a bejelölt áram referenciairánya pedig az óramutató járásával megegyező irányú.
 
A felszíntől <math>h</math> távolságban térerősség amplitúdója <math>{E_0 \over 2}</math>. Mennyi ilyenkor a fázisa a térerősségnek?


{{Rejtett
{{Rejtett
1 108. sor: 1 237. sor:
|szöveg=
|szöveg=


Tudjuk, hogy a hogy vezető anyagokban az elektromos térerősség komplex amplitúdója a mélység (z) függvényében:
Az indukálási törvény alapján, meghatározható a vezetőgyűrűben indukált feszültség. A Lenz-törvényből adódó NEGATÍV előjelet azonban most hagyjuk el, mivel most előre megadott referenciairányaink vannak. Majd a végén kiokoskodjuk, hogy szükséges-e extra mínuszjel:


<math>E(z) = E_0 \cdot e^{- \gamma z}</math>
<math>u_i(t)={d\Phi(t) \over dt}= \Phi_1 \cdot \omega  \cdot \cos(\omega t)</math>


Ebből az áram időfüggvénye: <math>R={U \over I} \longrightarrow i(t)={u_i(t) \over R}={\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>


<math>\gamma = {1+j \over \delta}  \longrightarrow E(z) = E_0 \cdot e^{-z/\delta} \cdot e^{-jz/\delta}</math>
Most nézzük meg, hogy teljesül-e a jelenlegi referenciairányokkal a Lenz-törvény. A Lenz-törvény kimondja, hogy az indukált feszültség iránya olyan kell, hogy legyen, hogy az általa létrehozott áram által keltett mágneses mező akadályozza az indukciót létrehozó folyamatot, jelen esetben a fluxus megváltozását.


Ebből a képletből kifejezhető az elektromos térerősség komplex amplitúdójának nagysága (abszolút értéke):
Vegyük az első negyedperiódusnyi időt. Ilyenkor a mágneses indukcióvektor a lap síkjából kifelé mutat és csökkenő erősségű. Tehát az indukált áramnak olyan mágneses mezőt kell létrehoznia, hogy annak indukcióvektorai az első negyedperiódusban a lap síkjából kifelé mutassanak, hiszen így akadályozzuk a fluxus csökkenését. A kiszámolt áramidőfüggvény az első negyedperiódusban pozitív értékű, tehát egybeesik a megadott referenciairánnyal. Az óramutató járásával megegyező irányba folyó áram a jobb kéz szabály szerint olyan mágneses mezőt hoz létre, melynek indukcióvektorai a lap síkjába befelé mutatnak. Ez pont ellentétes mint amire szükségünk van, tehát szükséges egy korrekciós mínuszjel a referenciairányok miatt.


<math>\left| E(z) \right|=  E_0 \cdot e^{-z/\delta}</math>
Az indukált áram időfüggvénye tehát: <math>i(t)=-{\Phi_1 \over R} \cdot \omega \cdot \cos(\omega t)</math>


Behelyettesítve a megadott adatokat:
}}


<math>\left| E(h) \right| =  E_0 \cdot e^{-h/\delta} = {E_0 \over 2}</math>


<math>-{h \over \delta} = ln(0.5)</math>
=== 98. Feladat: Zárt vezetőhurokban indukált feszültség ===


Most fejezzük ki a fentebbi képletből az elektromos térerősség komplex amplitúdójának fázisát:
Az xy síkon helyezkedik el egy <math>r=3m</math> sugarú, kör alakú, zárt L görbe. A mágneses indukció a térben homogén és z irányú komponense <math>\Delta t=40ms</math> idő alatt <math>B=0.8T</math> értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az L görbe mentén?


<math>arg \left\{ E(z) \right\} = -{z \over \delta}</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Az indukálási törvény alapján:


Behelyettesítve a megadott adatokat, majd az imént kiszámolt <math>-{h \over \delta}</math> arányt:
<math>u_i=-{d\Phi(t) \over dt}=-A \cdot { dB(t) \over dt}=
-r^2\pi \cdot { \Delta B\over \Delta t}=-r^2\pi \cdot {B_2-B_1\over\Delta t}=
- 3^2\pi \cdot {0-0.8\over0.04}=565.5 \;V </math>


<math> arg \left\{ E(h) \right\} = - {h \over \delta} = - ln(0.5) \approx 0.693 \; rad </math>
}}




}}
=== 99. Feladat: Zárt vezetőhurokban disszipálódó összes energia ===


R ellenállású zárt vezetőkeret fluxusa <math>0 < t < T</math> intervallumban ismert <math>\Phi(t)</math> szerint változik. Fejezze ki az intervallumban a keretben disszipálódó összes energiát!


=== 107. Feladat: Hengeres vezetőben disszipált hőteljesítmény ===
Egy <math>A=1.5 mm^2</math> keresztmetszetű, <math>l=3m</math> hosszú hengeres vezetőben <math>I=10A</math> amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység <math> \delta = 9.7 mm</math>, a fajlagos vezetőképesség pedig <math> \sigma = 3.7 \cdot 10^7 {S \over m}</math>. Mennyi a vezetőben disszipált hőteljesítmény?
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=A vezető sugara: <math>r=\sqrt{{1.5\over\pi}}=0.691mm<<\delta</math>
|szöveg=
 
Az indukálási törvény alapján:
 
<math>u_i=-{d\Phi(t) \over dt}</math>
 
Továbbá:


Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima <math>l</math> hosszúságú, <math>A</math> keresztmetszetű és <math> \sigma</math> fajlagos vezetőképességű vezetékdarabnak.
<math> P = { U^2 \over R } </math>


<math>R={1 \over \sigma}{l \over A}={1 \over 3.7 \cdot 10^{7}} \cdot {3 \over 1.5 \cdot 10^{-6}} \approx 54 \;m\Omega</math>
Ezt integrálni kell 0-tól T-ig, 1/T előtaggal.


A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):
(megj. nem vagyok 100%-ig biztos a megoldásban, de Bokor elfogadta így. Pontosítani ér!)


<math>P={1\over2}RI^2={1\over2} \cdot 0.054 \cdot 10^2 \approx 2.7 \;W</math>
(megj. Szerintem 1/T nélkül kell integrálni, mert akkor az átlagot ad és nem az összes disszipálódott energiát. Üdv, Egy másik felhasználó)


}}
}}


=== 100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség ===
Egy hosszú egyenes vezetőtől <math>d=15 m</math> távolságban egy <math>r=0,25 m</math> sugarú kör alakú zárt vezető hurok helyezkedik el. A vezető és a hurok egy síkra illeszkednek, a közeg pedig levegő.
Mekkora az indukált feszültség, ha a vezetőben folyó áram <math>50 {A \over \mu s}</math> sebességgel változik.


=== 109. Feladat: Hengeres vezető belsejében az elektromos térerősség ===
Egy <math>r=2mm</math> sugarú, hosszú hengeres vezető <math>\sigma=35 {MS \over m}</math> fajlagos vezetőképességű anyagból van, a behatolási mélység <math>\delta =80 \mu m</math>. A térerősség időfüggvénye a vezető felszínén <math>\vec{E}(t)=10 \cdot \cos(\omega t) \cdot \vec{n}_0</math>. Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos.
Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
Mivel: <math>\delta << r </math>


Az indukálási törvény alapján:


Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:
<math>u_i=-{\mathrm{d}\Phi(t) \over \mathrm{d} t}=-A \cdot { \mathrm{d}B(t) \over \mathrm{d} t}=
-A \mu_0 \cdot { \mathrm{d}H(t) \over \mathrm{d} t}</math>


<math>E(z)=E_0 \cdot e^{-\gamma z}=
A hosszú egyenes áramjárta vezető környezetében a mágneses térerősségvektor az Ampere-féle gerjesztési törvénnyel meghatározható. Ha a mágneses térerősséget egy <math>d</math> sugarú zárt <math>L</math> kör mentén integrálunk, amely által kifeszített <math>A</math> területű körlapot a közepén merőlegesen döfi át a vezeték, akkor a vonalintegrál egy egyszerű szorzássá egyszerűsödik:
E_0 \cdot e^{- \left( 1/ \delta + j/ \delta  \right) z}=E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta}</math>


<math>\oint_L \vec{H} \; \mathrm{d} \vec{l} = \int_A \vec{J} \; \mathrm{d} \vec{s}</math>


A differenciális Ohm-törvény: <math>\vec{J}=\sigma \cdot \vec{E }</math>
<math>H \cdot 2d\pi = I \longrightarrow H = {I \over 2d\pi}</math>




Ezeket egybefésülve és áttérve időtartományba:
Ezt behelyettesítve az indukált feszültség képletébe:


<math>\vec{J}(z,t)=Re \left\{ \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta} \cdot  e^{j \omega t} \right\} \cdot \vec{n}_0 = \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot \cos \left( \omega t - {z \over \delta} \right) \cdot \vec{n}_0 </math>
<math>u_i=-A \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- r^2 \pi \mu_0 \cdot {1 \over 2d\pi} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- {r^2 \mu_0 \over 2d} \cdot { \mathrm{d}I(t) \over \mathrm{d} t} =
- {0.25^2 \cdot 4\pi \cdot 10^{-7} \over 2 \cdot 15} \cdot 50 \cdot 10^6 \approx -130.9 \; mV
</math>




Behelyettesítés után, <math>z= 2 \delta</math> mélységben:
''Megjegyzés:'' Természetesen ez csak egy jó közelítés, hiszen a vezető keret mentén nem állandó nagyságú a mágneses térerősség változása, mivel az függ a vezetőtől való távolságtól is. Azonban a közepes távolságot véve, csak kismértékű hibát vétünk.


<math>\vec{J}(t)= 35 \cdot 10^6 \cdot 10 \cdot e^{-2 \delta / \delta} \cdot \cos \left( \omega t - {2 \delta \over \delta} \right) \cdot \vec{n}_0 = 47.37 \cdot \cos \left( \omega t - 2 \right) \cdot \vec{n}_0 \;{MA \over m^2}</math>


}}
}}




===111. Feladat: Behatolási mélység===
=== 101. Feladat: Zárt vezetőhurokban indukált feszültség===
Vezetőben terjedő síkhullám elektromos térerőssége minden 3 mm után a felére csökken. Határozza meg a behatolási mélységet, a csillapítási tényezőt és a fázistényezőt!
 
Adott egy L zárt görbe a lap síkjában. A mágneses indukcióvonalak a lap síkjára merőlegesek. A görbe által határolt mágneses fluxus időfüggvénye: <math>\Phi(t)=\Phi_0 \cdot {t^2 \over T}, \;\; ha \;\;0<t<T</math>.
 
Mekkora lesz az indukált feszültség nagysága amikor <math>t=T/3</math>?
 
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
<math> \gamma = \alpha + j\beta </math> terjedési együttható


<math> \alpha </math> - csillapítási tényező
Az indukálási törvény alapján:


<math> \beta </math> - fázistényező
<math>u_i(t)=-{d \Phi(t) \over dt}= -{2 \Phi_0 \over T} \cdot  t</math>


<math> \delta = \frac{1}{\alpha} </math> behatolási mélység


Behelyettesítve a <math>t=T/3</math> értéket:


Vezető anyagokban <math> \alpha = \beta </math> , mivel:
<math>u_i\left(t= {T \over 3} \right)= -{2 \Phi_0 \over T} \cdot {T \over 3}=-{2\over 3} \Phi_0</math>


<math> \gamma = \sqrt{j\omega\mu (\sigma + j\omega\varepsilon)} </math>, azonban vezető anyagokban <math> \varepsilon <<  \sigma </math>, így a terjedési együttható: <math> \gamma \approx \sqrt{j\omega\mu\sigma} = \sqrt{j}\sqrt{\omega\mu\sigma} </math>
}}


<math> \sqrt{j} = \sqrt{e^{j \pi/2}} = e^{j \pi/4} = \frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}} </math>


<math> \gamma = \sqrt{\frac{\omega\mu\sigma}{2}} + j\sqrt{\frac{\omega\mu\sigma}{2}} </math>
== Elektromágneses síkhullám jó vezetőben ==




Ebből <math> \delta </math> számításának módja:
=== 105. Feladat: Hengeres vezetőben adott mélységben a térerősség amplitúdója és fázisa ===


<math> \delta = \frac{1}{\alpha} = \frac{1}{\beta} = \sqrt{\frac{2}{\omega\mu\sigma}} </math> (de most nem ezt kell használni)
Egy <math>r</math> sugarú hengeres vezető anyagban a behatolási mélység <math>\delta<<r</math>. A henger felszínén az elektromos térerősség amplitúdója <math>E_0</math>, kezdőfázisa pedig <math>0 \; rad</math>.


A felszíntől <math>h</math> távolságban térerősség amplitúdója <math>{E_0 \over 2}</math>. Mennyi ilyenkor a fázisa a térerősségnek?


A térerősség amplitúdójának nagysága a vezetőben: <math> E(z) = E_0 e^{-\alpha z} = E_0 e^{-z/\delta} </math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


<math> E_0 e^{- (0.003\ \text{m})/\delta} = \frac{1}{2} E_0 </math>
Tudjuk, hogy a hogy vezető anyagokban az elektromos térerősség komplex amplitúdója a mélység (z) függvényében:


<math> \delta = -\frac{0.003\ \text{m}}{\ln{\frac{1}{2}}} \approx 4.328\ \text{mm} </math>
<math>E(z) = E_0 \cdot e^{- \gamma z}</math>


<math> \alpha = \beta = \frac{1}{\delta} \approx 231\ \frac{1}{\text{m}}</math>


}}
<math>\gamma = {1+j \over \delta} \longrightarrow E(z) = E_0 \cdot e^{-z/\delta} \cdot e^{-jz/\delta}</math>


Ebből a képletből kifejezhető az elektromos térerősség komplex amplitúdójának nagysága (abszolút értéke):


===112. Feladat: Vezető közeg hullámimpedanciája===
<math>\left| E(z) \right|= E_0 \cdot e^{-z/\delta}</math>
Egy <math>\mu_r=1</math> relatív permeabilitású vezetőben <math> \omega = 10^4 {1 \over s}</math> körfrekvenciájú síkhullám terjed. Tudjuk a terjedési együttható abszolút értékét, ami <math> \left| \gamma \right| = 5 \; {1 \over mm}</math>.


Mi a hullámimpedancia abszolút értéke?
Behelyettesítve a megadott adatokat:


{{Rejtett
<math>\left| E(h) \right| = E_0 \cdot e^{-h/\delta} = {E_0 \over 2}</math>
|mutatott='''Megoldás'''
|szöveg=


Tudjuk, hogy a terjedési együttható: <math>\gamma = \sqrt{ j \omega \mu \cdot \left( \sigma + j \omega \varepsilon \right) }</math>
<math>-{h \over \delta} = ln(0.5)</math>


Most fejezzük ki a fentebbi képletből az elektromos térerősség komplex amplitúdójának fázisát:


Mivel a közeg ó vezetés és relatíve alacsony körfrekvenciájú a síkhullám, így: <math> \sigma >> \omega \varepsilon </math>
<math>arg \left\{ E(z) \right\} = -{z \over \delta}</math>


Behelyettesítve a megadott adatokat, majd az imént kiszámolt <math>-{h \over \delta}</math> arányt:


A terjedési együttható, így egyszerűsíthető:
<math> arg \left\{ E(h) \right\} = - {h \over \delta} = - ln(0.5) \approx 0.693 \; rad </math>
<math> \gamma = \sqrt{ j \omega \mu \sigma } =
\sqrt{ j} \cdot \sqrt{ \omega \mu \sigma } =
{ 1 + j \over \sqrt{2} } \cdot \sqrt{ \omega \mu \sigma }</math>




Mivel ismerjük a terjedési együttható abszolút értékét, ebből a képletből kifejezhető a közeg fajlagos vezetőképessége:
}}


<math>\left| \gamma \right| =
\left| { 1 + j \over \sqrt{2} } \right| \cdot \sqrt{ \omega \mu \sigma }=
\sqrt{ \omega \mu \sigma } \longrightarrow
\sigma = { {\left| \gamma \right| }^2 \over \mu \omega}</math>


=== 106. Feladat:  Koaxiális kábel váltóáramú ellenállása ===


A hullámimpedancia képlete szintén egyszerűsíthető, figyelembe véve, hogy vezető közeg esetén:  <math> \sigma >> \omega \varepsilon </math>
Egy koaxiális kábel magjának sugara <math>r_1 = 2mm</math>, a köpenyének belső sugara <math>r_2 = 6 mm</math>, a külső sugara pedig <math>r_3 = 7 mm</math>. A mag és a köpeny vezetőképessége egyaránt <math>\sigma = 57 MS</math>. A behatolási mélység a kábelre kapcsolt generátor frekvenciáján <math>\delta = 102 \mu m</math>.


<math>Z_0 = \sqrt{{ j \omega \mu \over \sigma + j \omega \varepsilon }} \approx
Adja meg az elrendezés hosszegységre eső váltóáramú ellenállását.
\sqrt{{ j \omega \mu \over \sigma}} =
\sqrt{{ j \omega \mu \over { {\left| \gamma \right| }^2 \over \mu \omega}}}=
\sqrt{j} \cdot {\omega \mu \over \left| \gamma \right|} =
e^{j \cdot (\pi / 2)} \cdot  {\omega \mu_0 \mu_r \over \left| \gamma \right|} =
e^{j \cdot (\pi / 2)} \cdot  {10^4 \cdot 4\pi \cdot 10^{-7} \cdot 1 \over 5 \cdot 10^3} \approx
2.513 \; \cdot \; e^{j \cdot (\pi / 2)} \; \mu \Omega </math>


}}
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


A koaxiális kábel erővonalképe:


== Elektromágneses hullám szigetelőben==
[[File:Terek_106_Feladat.PNG | 300px ]]


Az elektromos térerősség mind a magban, mind pedig a köpenyben <math>e^{- z / \delta }</math> függvény szerint csökken.


=== 119. Feladat: Közeg hullámimpedanciájának számítása ===
Mivel a behatolási mélység nagyságrenddel kisebb, mint a kábel méretei, így ellenállás szempontjából olyan, mintha csak egy-egy <math>\delta</math> vastagságú keresztmetszeten folyna egyenáram mind a magban, mind pedig a köpenyben. Az eredő váltóáramú ellenállás pedig ezen két egyenáramú ellenállás összege:


Egy adott <math>\mu_r=5</math> relatív permeabilitású közegben síkhullám terjed <math>\omega = 10 {Mrad \over s}</math> körfrekvenciával. A terjedési együttható értéke: <math>\gamma = 0.1 \cdot j \;{1 \over m}</math><br /> Adja meg a közeg hullámellenállásának értékét!
<math>
R_{AC} = R_{DC,m} + R_{DC,k} =
{1 \over \sigma} { l \over A_1 } + {1 \over \sigma} { l \over A_2 } \approx
{1 \over \sigma} { l \over 2 r_1 \pi \delta } + {1 \over \sigma} { l \over 2 r_2 \pi \delta } =
{l \over \sigma \cdot 2 \pi \delta} \left( { 1 \over r_1 } + { 1 \over r_2 } \right)
</math>


{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők.


Ebből a hosszegységre eső váltóáramú ellenállás:


<math> Z_0 = \sqrt{\frac{j \omega \mu}{\sigma + j \omega \varepsilon }} </math>
<math>
R_{AC,l} = {1 \over \sigma \cdot 2 \pi \delta} \cdot \left( { 1 \over r_1 } + { 1 \over r_2 } \right) =
{1 \over 57 \cdot 10^6 \cdot 2 \pi \cdot 102 \cdot 10^{-6}} \cdot \left( { 1 \over 0.002 } + { 1 \over 0.006 } \right) =
18.25 \; m\Omega
</math>


<math> \gamma = \sqrt{j \omega \mu \cdot (\sigma +j \omega \varepsilon) } </math>
}}


=== 107. Feladat: Hengeres vezetőben disszipált hőteljesítmény ===
Egy <math>A=1.5 mm^2</math> keresztmetszetű, <math>l=3m</math> hosszú hengeres vezetőben <math>I=10A</math> amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység <math> \delta = 9.7 mm</math>, a fajlagos vezetőképesség pedig <math> \sigma = 3.7 \cdot 10^7 {S \over m}</math>. Mennyi a vezetőben disszipált hőteljesítmény?
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=A vezető sugara: <math>r=\sqrt{{1.5\over\pi}}=0.691mm<<\delta</math>


Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a második képletet négyzetre emelve, majd rendezve kapjuk:
Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima <math>l</math> hosszúságú, <math>A</math> keresztmetszetű és <math> \sigma</math> fajlagos vezetőképességű vezetékdarabnak.


<math> (\sigma +j \omega \varepsilon) = \frac{\gamma^{2}}{j \omega \mu } </math>
<math>R={1 \over \sigma}{l \over A}={1 \over 3.7 \cdot 10^{7}} \cdot {3 \over 1.5 \cdot 10^{-6}} \approx 54 \;m\Omega</math>


Ezt behelyettesítve az első egyenlet nevezőjébe:
A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):


<math> Z_0 = \sqrt{\frac{(j \omega \mu)^{2}}{\gamma^{2}}}</math>
<math>P={1\over2}RI^2={1\over2} \cdot 0.054 \cdot 10^2 \approx 2.7 \;W</math>


A gyökvonás elvégzése után az eredményt megadó formula:
}}




<math> Z_0 = \frac{j \omega \mu}{\gamma} = {j 10^7 \cdot 5 \cdot 4 \pi \cdot 10^{-7}  \over j 0.1}=628.3 \;\Omega</math>
=== 109. Feladat: Hengeres vezető belsejében az elektromos térerősség ===
 
Egy <math>r=2mm</math> sugarú, hosszú hengeres vezető <math>\sigma=35 {MS \over m}</math> fajlagos vezetőképességű anyagból van, a behatolási mélység <math>\delta =80 \mu m</math>. A térerősség időfüggvénye a vezető felszínén <math>\vec{E}(t)=10 \cdot \cos(\omega t) \cdot \vec{n}_0</math>. Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos.
Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy <math>\mu = \mu_0 \cdot \mu_r</math>
Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
 
}}
 
 
=== 125. Feladat: Síkhullám közeghatáron disszipált hatásos teljesítménye ===
 
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, ideális szigetelő közeg határfelületére.<br/>A szigetelő közeg a teljes végtelen félteret kitölti, a határfelületen pedig a mágneses térerősség amplitúdója <math>H=0.3 \; {A \over m}</math>.
 
Adja meg a határfelület <math>3 \; m^2</math> nagyságú felületén átáramló hatásos teljesítmény!
 
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
Mivel: <math>\delta << r </math>


Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:


<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} \</math>
Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:


Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:
<math>E(z)=E_0 \cdot e^{-\gamma z}=
E_0 \cdot e^{- \left( 1/ \delta + j/ \delta  \right) z}=E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta}</math>


<math>P=Re \left\{ {S} \right\} \cdot A</math>


A differenciális Ohm-törvény: <math>\vec{J}=\sigma \cdot \vec{E }</math>


A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos mind a mágneses térerősség amplitúdója.


Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
Ezeket egybefésülve és áttérve időtartományba:


<math>\vec{J}(z,t)=Re \left\{  \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot e^{-jz/ \delta} \cdot  e^{j \omega t} \right\} \cdot \vec{n}_0 = \sigma \cdot E_0 \cdot e^{-z/ \delta} \cdot \cos \left( \omega t - {z \over \delta} \right) \cdot \vec{n}_0 </math>


<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>


Behelyettesítés után, <math>z= 2 \delta</math> mélységben:


Felhasználva, hogy a szigetelőben <math>E = H \cdot Z_{0}' </math>, majd rendezve az egyenletet:
<math>\vec{J}(t)= 35 \cdot 10^6 \cdot 10 \cdot e^{-2 \delta / \delta} \cdot \cos \left( \omega t - {2 \delta \over \delta} \right) \cdot \vec{n}_0 = 47.37 \cdot \cos \left( \omega t - 2 \right) \cdot \vec{n}_0 \;{MA \over m^2}</math>
 
 
<math>P= {1 \over 2} \cdot \cdot \left( H \cdot Z_{0}' \right) \cdot A =
{1 \over 2} \cdot H^2 \cdot Z_{0}\cdot A = {1 \over 2} \cdot 0.3^2 \cdot 200  \cdot 3 = 27 \; W
</math>


}}
}}




=== 126. Feladat: Síkhullám közeghatáron, elektromos térerősség amplitúdójának meghatározása ===
===111. Feladat: Behatolási mélység===
 
Vezetőben terjedő síkhullám elektromos térerőssége minden 3 mm után a felére csökken. Határozza meg a behatolási mélységet, a csillapítási tényezőt és a fázistényezőt!
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, végtelen kiterjedésű ideális szigetelő féltér határfelületére. A szigetelő egy <math>A=2m^2</math> nagyságú felületén disszipálódó hatásos teljesítmény <math>P=10W</math>. Mekkora az elektromos térerősség amplitúdója a szigetelőben?
 
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
<math> \gamma = \alpha + j\beta </math> terjedési együttható


Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
<math> \alpha </math> - csillapítási tényező


<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} \</math>
<math> \beta </math> - fázistényező


<math> \delta = \frac{1}{\alpha} </math> behatolási mélység


Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:


<math>P=Re \left\{ {S} \right\} \cdot A</math>
Vezető anyagokban <math> \alpha = \beta </math> , mivel:


<math> \gamma = \sqrt{j\omega\mu (\sigma + j\omega\varepsilon)} </math>, azonban vezető anyagokban <math> \varepsilon <<  \sigma </math>, így a terjedési együttható: <math> \gamma \approx \sqrt{j\omega\mu\sigma} = \sqrt{j}\sqrt{\omega\mu\sigma} </math>


A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos, mind a mágneses térerősség amplitúdója.
<math> \sqrt{j} = \sqrt{e^{j \pi/2}} = e^{j \pi/4} = \frac{1}{\sqrt{2}} + j\frac{1}{\sqrt{2}} </math>


Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
<math> \gamma = \sqrt{\frac{\omega\mu\sigma}{2}} + j\sqrt{\frac{\omega\mu\sigma}{2}} </math>


<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>


Felhasználva, hogy a szigetelőben <math>H = {E \over Z_{0}'} </math>, majd rendezve az egyenletet:
Ebből <math> \delta </math> számításának módja:
 
<math> \delta = \frac{1}{\alpha} = \frac{1}{\beta} = \sqrt{\frac{2}{\omega\mu\sigma}} </math> (de most nem ezt kell használni)
 
 
A térerősség amplitúdójának nagysága a vezetőben: <math> E(z) = E_0 e^{-\alpha z} = E_0 e^{-z/\delta} </math>
 
<math> E_0 e^{- (0.003\ \text{m})/\delta} = \frac{1}{2} E_0 </math>


<math> \delta = -\frac{0.003\ \text{m}}{\ln{\frac{1}{2}}} \approx 4.328\ \text{mm} </math>


<math>P= {1 \over 2} \cdot E \cdot {E \over Z_{0}' } \cdot A =
<math> \alpha = \beta = \frac{1}{\delta} \approx 231\ \frac{1}{\text{m}}</math>
{E^2 \over 2 \cdot Z_{0}' } \cdot A \longrightarrow E =
\sqrt{{2PZ_{0}' \over  A} } = \sqrt{{2 \cdot 10 \cdot 200 \over  2} } \approx 44.72 \;{V \over m} </math>


}}
}}




=== 129. Feladat: Elektromágneses síkhullám közeghatáron ===
===112. Feladat: Vezető közeg hullámimpedanciája===
Egy <math>\mu_r=1</math> relatív permeabilitású vezetőben <math> \omega = 10^4 {1 \over s}</math> körfrekvenciájú síkhullám terjed. Tudjuk a terjedési együttható abszolút értékét, ami <math> \left| \gamma \right| = 5 \; {1 \over mm}</math>.


<math>\varepsilon_r = 2.25</math> relatív permittivitású szigetelőben terjedő elektromágneses síkhullám merőlegesen esik egy levegővel kitöltött végtelen féltér határfelületére.<br/>A határfelületen az elektromos térerősség amplitúdója <math>E=250\; {V \over m}</math>.
Mi a hullámimpedancia abszolút értéke?
 
Adja meg a <math>H^+</math> értékét a közeghatáron, az első közegben.


{{Rejtett
{{Rejtett
1 381. sor: 1 525. sor:
|szöveg=
|szöveg=


A megoldás során a távvezeték analógiát fogjuk felhasználni.
Tudjuk, hogy a terjedési együttható: <math>\gamma = \sqrt{ j \omega \mu \cdot \left( \sigma + j \omega \varepsilon \right) }</math>


Először meg kell határoznunk a szigetelő reflexiós tényezőjét, ha a "lezárás" levegő:


<math>r={Z_{0,l} - Z_{0,sz} \over Z_{0,l} + Z_{0,sz}}=
Mivel a közeg jó vezető és relatíve alacsony körfrekvenciájú a síkhullám, így: <math> \sigma >> \omega \varepsilon </math>
{Z_{0,l} - Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }\over Z_{0,l} + Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }}=
{\sqrt{\varepsilon_r} - 1 \over \sqrt{\varepsilon_r} +1}=
{\sqrt{2.25} -1 \over \sqrt{2.25} +1} = 0.2 </math>




A folytonossági feltételből következik, hogy a határfelületen az elektromos térerősség amplitúdója nem változhat meg:
A terjedési együttható, így egyszerűsíthető:
 
<math> \gamma = \sqrt{ j \omega \mu \sigma } =
<math>E^+_l = E^+_{sz} + E^-_{sz} = E^+_{sz} \cdot (1+r)</math>
\sqrt{ j} \cdot \sqrt{ \omega \mu \sigma } =
 
{ 1 + j \over \sqrt{2} } \cdot \sqrt{ \omega \mu \sigma }</math>
<math>H^+_{sz} = {E^+_{sz} \over Z_{0,sz}} \longrightarrow E^+_{sz} = H^+_{sz} \cdot Z_{0,sz}</math>
 
 
 
<math>E^+_l = H^+_{sz} \cdot Z_{0,sz} \cdot (1+r) \longrightarrow
Mivel ismerjük a terjedési együttható abszolút értékét, ebből a képletből kifejezhető a közeg fajlagos vezetőképessége:
H^+_{sz} = {E^+_l \over Z_{0,sz} \cdot (1+r)}=
 
{E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}=
<math>\left| \gamma \right| =
{250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math>
\left| { 1 + j \over \sqrt{2} } \right| \cdot \sqrt{ \omega \mu \sigma }=
}}
\sqrt{ \omega \mu \sigma } \longrightarrow
 
\sigma = { {\left| \gamma \right| }^2 \over \mu \omega}</math>
 
 
== Poynting-vektor ==
 
 
A hullámimpedancia képlete szintén egyszerűsíthető, figyelembe véve, hogy vezető közeg esetén:  <math> \sigma >> \omega \varepsilon </math>
 
 
=== 137. Feladat:  Elektromos energiasűrűség időbeli átlagából a Poynting-vektor időbeli átlagának számítása===
<math>Z_0 = \sqrt{{ j \omega \mu \over \sigma + j \omega \varepsilon }} \approx
 
\sqrt{{ j \omega \mu \over \sigma}} =
Levegőben síkhullám terjed a pozitív <math>z</math> irányba. A tér tetszőleges pontjában az elektromos energiasűrűség időbeli átlaga <math>w = 9 \; {\mu J \over m^3}</math>.
\sqrt{{ j \omega \mu \over { {\left| \gamma \right| }^2 \over \mu \omega}}}=
 
\sqrt{j} \cdot {\omega \mu \over \left| \gamma \right|} =
Adja meg a Poynting-vektor időbeli átlagát!
e^{j \cdot (\pi / 2)} \cdot  {\omega \mu_0 \mu_r \over \left| \gamma \right|} =
 
e^{j \cdot (\pi / 2)} \cdot  {10^4 \cdot 4\pi \cdot 10^{-7} \cdot 1 \over 5 \cdot 10^3} \approx
{{Rejtett
2.513 \; \cdot \; e^{j \cdot (\pi / 2)} \; \mu \Omega </math>
|mutatott='''Megoldás'''
 
|szöveg=
}}
 
 
A Poynting-vektor időbeli átlaga felírható az energiasűrűség időbeli átlagának és a fénysebességnek a szorzataként:
=== 114. Feladat: Teljesítményváltozás ===
 
Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet!
<math>S = w \cdot c \approx
 
9 \cdot 10^{-6} \; {J \over m^3} \cdot 3 \cdot 10^8 \; {m \over s} =
 
=== 116. Disszipált teljesítmény alumíniumvezetőben ===
 
Egy hengeres <math> r = 2mm </math> sugarú és <math> L = 8m </math> hosszúságú alumínium vezetőben <math> I = 3A </math> amplítúdójú szinuszos áram folyik. A vezetőben mért behatolási mélység <math> \delta = 60 \mu m </math> , határozza meg a vezető által disszipált teljesítményt, ha <math> \sigma = 35*10^6 S/m </math>!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= Mivel a vizsgáztatóm azt mondta a megoldásomra, hogy rossz. de közben áttértünk a tételre, nem írnék le rossz megoldást.
}}
 
== Elektromágneses hullám szigetelőben==
 
=== 119. Feladat: Közeg hullámimpedanciájának számítása ===
 
Egy adott <math>\mu_r=5</math> relatív permeabilitású közegben síkhullám terjed <math>\omega = 10 {Mrad \over s}</math> körfrekvenciával. A terjedési együttható értéke: <math>\gamma = 0.1 \cdot j \;{1 \over m}</math><br /> Adja meg a közeg hullámellenállásának értékét!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők.
 
 
<math> Z_0 = \sqrt{\frac{j \omega \mu}{\sigma + j \omega \varepsilon }} </math>
 
<math> \gamma = \sqrt{j \omega \mu \cdot (\sigma +j \omega \varepsilon) } </math>
 
 
Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a második képletet négyzetre emelve, majd rendezve kapjuk:
 
<math> (\sigma +j \omega \varepsilon) = \frac{\gamma^{2}}{j \omega \mu } </math>
 
Ezt behelyettesítve az első egyenlet nevezőjébe:
 
<math> Z_0 = \sqrt{\frac{(j \omega \mu)^{2}}{\gamma^{2}}}</math>
 
A gyökvonás elvégzése után az eredményt megadó formula:
 
 
<math> Z_0 = \frac{j \omega \mu}{\gamma} = {j 10^7 \cdot 5 \cdot 4 \pi \cdot 10^{-7}  \over j 0.1}=628.3 \;\Omega</math>
 
Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (1/s és 1/m), illetve figyeljünk hogy <math>\mu = \mu_0 \cdot \mu_r</math>
 
}}
=== 120. Feladat: Felületen átáramló hatásos teljesítmény számítása ===
 
Homogén vezető végtelen féltérben síkhullám terjed a határfelületre merőlegesen. E = 25mV/m, H= 5A/m. Adja meg egy adott, a z=0 határfelületen levő A=3m^2 felületre az azon átáramló hatásos teljesítményt!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= A megoldás ismeretlen.
 
}}
 
=== 121. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása ===
 
Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: <math>\vec{E} =(5 \vec{e}_y - 12 \vec{e}_z ) \cdot e^{j \pi / 3} \;{kV \over m}</math><br/>Adja meg a <math>\vec{H}</math> komplex mágneses térerősségvektort!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A megoldás során a távvezeték - EM hullám betűcserés analógiát használjuk fel!
 
Először is szükségünk van a levegő hullámimpedanciájára. Mivel levegőben vagyunk, így <math>\sigma << \varepsilon</math>, valamint <math>\mu = \mu_0</math> és <math>\varepsilon = \varepsilon_0</math>
 
<math>Z_0= \sqrt{{j \omega \mu \over \sigma + j \omega \varepsilon}} \approx \sqrt{{\mu_0 \over \varepsilon_0}} \approx 377 \Omega</math>
 
Bontsuk most fel a komplex elektromos térerősségvektort a két komponensére:
 
<math>\vec{E}=\vec{E}_y+\vec{E}_z</math>
 
<math>\vec{E}_y=5 \cdot e^{j \pi / 3} \cdot \vec{e}_y \;{kV \over m}</math>
 
<math>\vec{E}_z= - 12 \cdot e^{j \pi / 3} \cdot \vec{e}_z  \;{kV \over m}</math>
 
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>):
 
 
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math>
 
<math>\vec{H}_x={E_z \over Z_0} \cdot \vec{e}_x \approx - 31.83 \cdot e^{j \pi / 3} \cdot \vec{e}_x \;{A \over m}</math>
 
A két komponens összegéből pedig már előáll a komplex mágneses térerősségvektor:
 
<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot  \vec{e}_z - 31.83  \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math>
 
}}
 
 
 
=== 125. Feladat: Síkhullám közeghatáron disszipált hatásos teljesítménye ===
 
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, ideális szigetelő közeg határfelületére.<br/>A szigetelő közeg a teljes végtelen félteret kitölti, a határfelületen pedig a mágneses térerősség amplitúdója <math>H=0.3 \; {A \over m}</math>.
 
Adja meg a határfelület <math>3 \; m^2</math> nagyságú felületén átáramló hatásos teljesítmény!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
 
<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} </math>
 
Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:
 
<math>P=Re \left\{ {S} \right\} \cdot A</math>
 
 
A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos mind a mágneses térerősség amplitúdója.
 
Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
 
 
<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>
 
 
Felhasználva, hogy a szigetelőben <math>E = H \cdot Z_{0}' </math>, majd rendezve az egyenletet:
 
 
<math>P= {1 \over 2} \cdot H  \cdot \left( H \cdot Z_{0}' \right)  \cdot A =
{1 \over 2} \cdot H^2 \cdot Z_{0}'  \cdot A = {1 \over 2} \cdot 0.3^2 \cdot 200  \cdot 3 = 27 \; W
</math>
 
}}
 
=== 126. Feladat: Síkhullám közeghatáron, elektromos térerősség amplitúdójának meghatározása ===
 
Egy levegőben terjedő síkhullám merőlegesen esik egy <math>Z_0'=200 \Omega</math> hullámimpedanciájú, végtelen kiterjedésű ideális szigetelő féltér határfelületére. A szigetelő egy <math>A=2m^2</math> nagyságú felületén disszipálódó hatásos teljesítmény <math>P=10W</math>. Mekkora az elektromos térerősség amplitúdója a szigetelőben?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Tudjuk, hogy egy elektromágneses hullám által adott <math>A</math> felületen disszipált hatásos teljesítmény:
 
<math>P=\int_{A} Re \left\{ \vec{S} \right\} \mathrm{d} \vec{s} </math>
 
 
Mivel jelen esetben a Poynting-vektor és a felület normálisa párhuzamosak, így a felületintegrál egyszerű szorzássá egyszerűsödik:
 
<math>P=Re \left\{ {S} \right\} \cdot A</math>
 
 
A folytonossági feltételekből tudjuk, hogy közeg határfelületén az elektromos térerősség tangenciális komponense nem változhat. A mágneses térerősség tangenciális komponense pedig akkor nem változhat, ha a felületi áramsűrűség zérus. Ez jelen esetben fennáll, tehát a határfelületen állandó mind az elektromos, mind a mágneses térerősség amplitúdója.
 
Mivel síkhullámról van szó, ahol egymásra merőlegesek az elektromos és mágneses térerősség vektorok, valamint fázisban vannak, így a Poynting vektor valós része felírható az alábbi formulával, ahol <math>E</math> és <math>H</math> a határfelületen vett amplitúdók nagysága:
 
<math>P= {1 \over 2} \cdot E \cdot H \cdot A </math>
 
Felhasználva, hogy a szigetelőben <math>H = {E \over Z_{0}'} </math>, majd rendezve az egyenletet:
 
 
<math>P= {1 \over 2} \cdot E \cdot {E \over Z_{0}' } \cdot A =
{E^2 \over 2 \cdot Z_{0}' } \cdot A \longrightarrow E =
\sqrt{{2PZ_{0}' \over  A} } = \sqrt{{2 \cdot 10 \cdot 200 \over  2} } \approx 44.72 \;{V \over m} </math>
 
}}
 
=== 129. Feladat: Elektromágneses síkhullám közeghatáron ===
 
<math>\varepsilon_r = 2.25</math> relatív permittivitású szigetelőben terjedő elektromágneses síkhullám merőlegesen esik egy levegővel kitöltött végtelen féltér határfelületére.<br/>A határfelületen az elektromos térerősség amplitúdója <math>E=250\; {V \over m}</math>.
 
Adja meg a <math>H^+</math> értékét a közeghatáron, az első közegben.
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A megoldás során a távvezeték analógiát fogjuk felhasználni.
 
Először meg kell határoznunk a szigetelő reflexiós tényezőjét, ha a "lezárás" levegő:
 
<math>r={Z_{0,l} - Z_{0,sz} \over Z_{0,l} + Z_{0,sz}}=
{Z_{0,l} - Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }\over Z_{0,l} + Z_{0,l}\cdot {1 \over \sqrt{\varepsilon_r} }}=
{\sqrt{\varepsilon_r} - 1 \over \sqrt{\varepsilon_r} +1}=
{\sqrt{2.25} -1 \over \sqrt{2.25} +1} = 0.2 </math>
 
 
A folytonossági feltételből következik, hogy a határfelületen az elektromos térerősség amplitúdója nem változhat meg:
 
<math>E^+_l = E^+_{sz} + E^-_{sz} = E^+_{sz} \cdot (1+r)</math>
 
<math>H^+_{sz} = {E^+_{sz} \over Z_{0,sz}} \longrightarrow E^+_{sz} = H^+_{sz} \cdot Z_{0,sz}</math>
 
<math>E^+_l = H^+_{sz} \cdot Z_{0,sz} \cdot (1+r) \longrightarrow
H^+_{sz} = {E^+_l \over Z_{0,sz} \cdot (1+r)}=
{E^+_l \over Z_{0,l} \cdot {1\over \sqrt{\varepsilon_r}} \cdot (1+r)}=
{250 \over 120\pi \cdot {1\over \sqrt{2.25}} \cdot (1+0.2)} \approx 0.829 \; {A \over m}</math>
}}
 
=== 130. Feladat: Elektromágneses síkhullám ideális szigetelőben ===
Egy ideális szigetelőben terjedő elektromágneses hullám időfüggvénye: <math>E(x,t) = 100 \cdot \cos(1.1t - 7.5x) \cdot e_x \frac{V}{m}</math>.
Az idő mértékegysége <math>\mu s</math>, a távolságé <math>km</math>.
 
Határozza meg a közeg dielektromos állandóját!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A térerősség általános időfüggvénye: <math>E(x,t) = E_0 \cdot \cos(\omega t - \beta x) \cdot e_x</math>.
 
Ebből látszik, hogy jelen feladatban <math>\omega = 1.1 \frac{Mrad}{s} </math> és <math>\beta = 7.5 \frac{1}{km}</math>.
Tudjuk azt is, hogy <math> v_f = \frac{c}{\sqrt \varepsilon_r} = \frac{\omega}{\beta}</math>. Átrendezve: <math>\varepsilon_r = (\frac{\beta}{\omega} \cdot c)^2 = (\frac{7.5 \cdot 10^-3}{1.1 \cdot 10^6} \cdot 3 \cdot 10^8)^2 = 4.18 </math>.
}}
 
=== 134. Feladat: Elektromágneses síkhullám szigetelő határfelületén ===
Levegőben terjedő síkhullám merőlegesen esik egy 200 <math>\Omega</math> hullámimpedanciájú ideális szigetelővel kitöltött végtelen féltér határfelületére. Mekkora a levegőben az elektromos térerősség maximális amplitúdója, ha a minimális amplitúdó levegőben 80 <math>{V \over m}</math>?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Először a reflexiós tényezőt kell kiszámítani ahol <math> Z_0=377\Omega Z_2=200\Omega </math> <math>  r={Z_2 - Z_0 \over Z_2 + Z_0}\approx 0,3 </math>.
 
A reflexiós tényezőből ki tudjuk számolni az állóhullámarányt.
 
<math> SWR= {1+|r| \over 1-|r|} \approx 1,86 </math>
(Ell.: 1 és <math>\infty</math> között van.)
SWR=<math> { |U_{max}| \over |U_{min}| } \Rightarrow |U_{max}|=|U_{min}|*SWR=80*1,86=148,8  {V \over m} </math>
}}
 
=== 135. Feladat: Elektromágneses síkhullám által gerjesztett áramsűrűség ===
Egy levegőben terjedő síkhullám merőlegesen esik egy végtelen kiterjedésű fémsík felületére. A síktól <math>\lambda \over 8</math> távolságra az elektromos térerősség komplex amplitúdója <math>500 {{V} \over {m}}</math>. Számítsa ki a felületi áramsűrűség nagyságát!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A távvezeték analógiát felhasználva a lezárás rövidzár, így <math>r = -1</math>.
 
<math>E_2(h) = {E^+_2} \cdot {e^{j \beta (h-z)}} + {r} \cdot {{E^+_2} \cdot {e^{-j \beta (h-z)}}}</math>
 
<math>{\beta = {{2 \pi} \over {\lambda}}} \Rightarrow  E_2({{\lambda} \over {8}}) = {E^+_2} \cdot {e^{j {{ \pi } \over {4}}}} - {E^+_2} \cdot {e^{-j {{ \pi } \over {4}}}} = E^+_2 \cdot {\sqrt{2}j}</math>
 
<math>E^+_2 = {{500 {{V}\over{m}}} \over {\sqrt{2}j}} = -353.55i {{V} \over {m}}</math>
 
<math>|H^+_2| = {{|E^+_2|}\over{120\pi}} = 0.9378 {{A}\over{m}}</math>
 
 
 
Mivel vezetőben <math>H_{1t} = 0</math> és <math>H_{2t} - H_{1t} = K</math> azaz <math>n \times H_2 = K</math>
 
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
}}
=== 136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása ===
Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:<math>E = E0*(ex*cos(wt)+3*ey*cos(wt-pi/6))</math>.Adja meg a mágneses térerősség x irányú komponensét!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak.
 
Tehát:
 
<math>H = (E0/Z0)*(ey*cos(wt)+3*ex*cos(wt-pi/6))</math>
 
<math>Hx = (E0/Z0)*(3*ex*cos(wt-pi/6))</math>
 
//Bilicz azt mondta kell a Hx-hez egy negatív előjel
}}
 
== Poynting-vektor ==
 
 
=== 137. Feladat:  Elektromos energiasűrűség időbeli átlagából a Poynting-vektor időbeli átlagának számítása===
 
Levegőben síkhullám terjed a pozitív <math>z</math> irányba. A tér tetszőleges pontjában az elektromos energiasűrűség időbeli átlaga <math>w = 9 \; {\mu J \over m^3}</math>.
 
Adja meg a Poynting-vektor időbeli átlagát!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A Poynting-vektor időbeli átlaga felírható az energiasűrűség időbeli átlagának és a fénysebességnek a szorzataként:
 
<math>S = w \cdot c \approx
9 \cdot 10^{-6} \; {J \over m^3} \cdot 3 \cdot 10^8 \; {m \over s} =
2.7 \; {kW \over m^2}</math>
2.7 \; {kW \over m^2}</math>


1 443. sor: 1 862. sor:
}}
}}


=== 142. Feladat: Hertz-dipólus távoltérben ===
Levegőben álló Hertz-dipólus távolterében az elektromos térerősség amplitúdója az antennától r távolságban, az antenna tengelyétől mért <math>\vartheta </math> elevációs szög alatt <math>E(r, \vartheta)={200V \over r} \cdot sin\vartheta</math>. Adja meg az antenna által kisugárzott összes hatásos teljesítményt! <math>(D=1,5)</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg= Hertz-dipólus távoltérben
}}


=== 143. Feladat: Hertz-dipólus által adott irányban kisugárzott teljesítmény ===
=== 143. Feladat: Hertz-dipólus által adott irányban kisugárzott teljesítmény ===
1 488. sor: 1 913. sor:
<math>\vec{E}(r)=\frac{U_0}{r} \cdot \vec{e_r}</math> és <math>\vec{H}(r)=\frac{I_0}{r} \cdot \vec{e_\varphi}</math>  
<math>\vec{E}(r)=\frac{U_0}{r} \cdot \vec{e_r}</math> és <math>\vec{H}(r)=\frac{I_0}{r} \cdot \vec{e_\varphi}</math>  


(<math>\vec{e_r}, \vec{e_\varphi}</math> és <math>\vec{e_z}</math> a radiális, fi és z irányú egységvektorok)
(<math>\vec{e_r}, \vec{e_\varphi}</math> és <math>\vec{e_z}</math> a radiális, <math>\varphi</math> és <math>z</math> irányú egységvektorok)


Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara <math>r_1</math>, a külső vezető belső sugara <math>r_2</math>, a vezetők ideálisak, a kábel tengelye a z irányú.
Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara <math>r_1</math>, a külső vezető belső sugara <math>r_2</math>, a vezetők ideálisak, a kábel tengelye a <math>z</math> irányú.


{{Rejtett
{{Rejtett

A lap jelenlegi, 2025. január 8., 14:47-kori változata


Itt gyűjtjük a szóbeli vizsgán húzható számolási feladatokat. Az itt lévő feladatok csak iránymutatók, időközben lehetséges, hogy változtatnak a tételsoron. Nagyon sok beugró feladat kerül ki ezek közül is, így ahhoz is kiváló gyakorlás ezeket a feladatokat végigoldani.

A feladatokban szereplő számadatok nem túl lényegesek, mivel a vizsgán is csak a számolás menetére és elméleti hátterére kíváncsiak.

Kérlek bővítsétek a szóbelin ténylegesen kapott feladatokkal, amennyiben időtök engedi, részletes megoldással is.
Hibák előfordulhatnak benne!!!
Már az is nagy segítség, ha legalább az általad húzott feladat PONTOS szövegét és SORSZÁMÁT beírod ide!

Ha esetleg a LATEX ismeretének hiánya tartana csak vissza a gyűjtemény bővítésétől, akkor látogass el a Segítség:Latex és a Segítség:LaTeX példák oldalakra. Ezeken minden szükséges információt meglelsz egy helyen. Jól használható még ez az Online LATEX editor is, ahol real time láthatod amit írsz, valamint gyorsgombok vannak a legtöbb funkciókra. Akát ott is megírhatod a képleteket, majd egyszerűen bemásolod ide őket. De ha még ez se megy, akkor egyszerűen nézzél meg egy már fent lévő feladatot, hogy ott hogy vannak megoldva a speciális karakterek.

Sablon:Noautonum


Elektrosztatika

1. Feladat: Két töltött fémgömb között az elektromos térerősség

Két azonos r0=3cm sugarú fémgömb középpontjának távolsága d=1.8m. A gömbök közé U0=5kV feszültséget kapcsolunk.

Határozza meg a középpontokat összekötő egyenes szakasz felezőpontjában az elektromos térerősséget.

Megoldás

3. Feladat: Elektromos térerősség egyenletesen töltött henger belsejében

Levegőben álló, d=10cm átmérőjű henger, egyenletes ρ=200nCm3 térfogati töltéssűrűséggel töltött. εr=1.

Adja meg az elektromos térerősség nagyságát a henger belsejében, a tengelytől a=d5 távolságban!

Megoldás


11. Feladat: Ismert potenciálú és töltésű fémgömb sugarának meghatározása

Egy levegőben álló, töltött fémgömb felszínén a felületi töltéssűrűség σ=10μCm2. A gömb potenciálja a végtelen távoli ponthoz képest Φ0=3kV. Mekkora a gömb sugara?

Megoldás


19. Feladat: Gömbkondenzátor elektródáira kapcsolható maximális feszültség

Egy gömbkondenzátor belső elektródájának sugara R1=4mm, külső elektródájának sugara R2=6mm, a dielektrikum relatív dielektromos állandója εr=4.5.

Legfeljebb mekkora feszültséget kapcsolhatunk a kondenzátorra, ha a térerősség a dielektrikumban nem haladhatja meg az Emax=500kVm értéket.

Megoldás

22. Feladat: Elektródarendszer energiaváltozása széthúzás hatására

Levegőben egymástól d1=1m távolságban helyezkedik el két kis sugarú elszigetelt fémgömb, melyek között az erő F=5N nagyságú erő hat.

Mekkora az elektromos mező energiájának megváltozása, miközben a gömbök távolságát d2=4m-re növeljük?

Megoldás

24. Feladat: Elektródarendszer energiája

Két elektródából és földből álló elektródarendszer föld- és főkapacitásai: C10,C20,C12. Az elektródák potenciálja φ1,φ2 a föld potenciálját válasszuk nullának: φ0=0.

Mekkora az elektródarendszerben tárolt elektrosztatikus energia?

Megoldás

26. Feladat: Fém gömbhéj felületi töltéssűrűségének meghatározása

Egy levegőben álló, zérus össztöltésű fém gömbhéj belső sugara r, külső sugara 1.5r. A gömbhéj középpontjában Q ponttöltés van.

Adja meg a gömbhéj külső és belső felszínén felhalmozódó felületi töltéssűrűségek hányadosát!

Megoldás

27. Feladat: R sugarú egyenletesen töltött gömb D tere

Egy R sugarú gömb egyenletes ρ térfogati töltéssűrűséggel töltött.

Adja meg az elektromos eltolás nagyságát a középpontól 2R távolságban.

Megoldás

28. Feladat: Gömb kapacitása a végtelenhez képest

Levegőben áll egy 20cm sugarú fémgömb, amelyet egyenletes 3cm vastagságú 4.5 relatív dielektromos állandójú szigetelő réteg borít.

Adja meg a gömb kapacitását a végtelen távoli térre vonatkoztatva!

Megoldás

Stacionárius áramlási tér

34. Feladat: Áramsűrűség meghatározása egy felület másik oldalán

Adott Z=0 sík. A σ vezetőképesség: Z>0 esetén σ=σ+ és Z<0 esetén σ=σ. Adott J1=J1(x)ex+J1(z)ez áramsűrűség a sík egyik oldalán.

Határozza meg az áramsűrűség függvényt a felület másik oldalán!

Megoldás

36. Feladat: Pontszerű áramforrás környezetében a teljesítménysűrűség meghatározása

Adott egy pontszerű I=10A áramerősségű pontszerű áramforrás egy σ=200Sm fajlagos vezetőképességű közegben.
Határozza meg a teljesítménysűrűséget a forrástól R=3m távolságban.

Megoldás


38. Feladat: Koaxiális kábel szivárgási ellenállásából fajlagos vezetőképesség számítása

Egy koaxiális kábel erének a sugara r1=2mm, köpenyének belső sugara r2=6mm.

Mekkora a szigetelőanyag σ fajlagos vezetőképessége, ha a kábel l=200m hosszú szakaszának szivárgási ellenállása R=4MΩ?

Megoldás


42. Feladat: Áramsűrűségből megadott felületen átfolyó áram számítása

Stacionárius áramlási térben az áramsűrűség J=5ezkAm2. Mekkora a z-tengellyel 60°-os szöget bezáró A=80cm2 felületen átfolyó áram?

Megoldás

Stacionárius mágneses tér

48. Feladat: Mágneses térerősség meghatározása áramjárta félegyenesek

Fel kell bontani két vezetőre(egyik egyenes, a másik egy L alakú lesz), mindkettőn 3A fog folyni. Kiszámolod hogy az egyik meg a másik mekkora mágneses teret hoz létre abban a pontban (Biot-Savart), és a a végén összeadod azt a két értéket (szuperpozíció).

A T-elágazás szárai végtelen félegyeneseknek tekinthetők. Adja meg a vezetők síkjában fekvő P pontban a mágneses térerősséget! (ábra a megoldásnál)

Megoldás

50. Feladat: Két áramjárta vezető közötti erőhatás

Két egymással párhuzamos végtelen hosszú vezető egymástól d=4m távolságban helyezkedik el. Az egyiken I1=2A, a másikon I2=3A folyik.

Mekkora erő hat az egyik vezeték l=1m-es szakaszára?

Megoldás


52. Feladat: Két toroid tekercs kölcsönös indukciója

Egy toroidra két tekercs van csévélve, az egyik menetszáma N1, a másiké N2. A toroid közepes sugara r, keresztmetszetének felülete A, relatív permeabilitása μr.
Határozza meg a két tekercs kölcsönös induktivitását!

Megoldás


53. Feladat: Két tekercs kölcsönös indukciója toroid vasmagon

Toroid alakú vasmagon egy N1=300 és egy N2=500 menetes tekercs helyezkedik el. Az N1 menetszámú tekercs öninduktivitása L1=0,9H. Adja meg a két tekercs közötti kölcsönös induktivitás nagyságát!

Megoldás



58. Feladat: Toroid tekercs fluxusa és energiája

Hányszorosára változik egy L önindukciós együtthatóval rendelkező I1=2A árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan I2=5A -re növeljük?

Hányszorosára változik a tekercs mágneses mezejében tárolt energia?

Megoldás

59. Feladat: Kölcsönös indukciós együttható meghatározása a Biot-Savart törvény segítségével

Egy szabályos kör alakú R sugarú körvezetővel egy síkban, a körvezető középpontjában helyezkedik el egy a oldalhosszúságú négyzet alakú vezető keret. Határozza meg a két vezető keret kölcsönös indukciós együtthatóját a Biot-Savart törvény segítségével, ha a<<R !

Megoldás


???. Feladat: Kondenzátor dielektrikumában disszipált teljesítmény

A feladat sorszáma NEM biztos, ha valaki meg tudja erősíteni/cáfolni, az javítsa pls! Eddig ez az 59.-es volt, de biztos nem ez a valódi sorszáma, 59. fentebb.

Adott egy kondenzátor, melynek fegyverzetei között egy σ=50nSm fajlagos vezetőképességű dielektrikum helyezkedik el. A kondenzátor A=100cm2 felületű fegyverzetei egymástól d=20mm távolságra helyezkednek el. Határozza meg a dielektrikumban disszipált teljesítményt, ha a kondenzátor fegyverzeteire U=1.2kV feszültséget kapcsolunk.

Megoldás


61. Feladat: Toroid tekercs mágneses indukciója

Adott egy kör keresztmetszetű toroid alakú, μr=1200 relatív permeabilitású, N=200 menetes tekercs, melynek átlagos erővonal hossza L=60cm.
A tekercselésben I=0.3A nagyságú áram folyik.

Adja meg a mágneses indukció nagyságát a toroid belsejében! Miért ad jó értéket a közelítő számításunk?

Megoldás

62. Feladat: Szolenoid tekercs mágneses indukciója

Adott: A=5cm2, N=1000, L=???, μr=???.

Adja meg a mágneses indukció nagyságát a Szolenoid belsejében!

64. Feladat: Hosszú egyenes vezető mágneses tere és a vezetőben tárolt mágneses energia

Hosszú, R sugarú alumínium vezetőben I áram folyik.

Határozza meg a vezető környezetében a mágneses teret! Mennyi mágneses energia raktározódik a vezető egység hosszú szakaszában?

Megoldás

65. Feladat: Koaxiális jellegű vezeték tengelyében a mágneses térerősség

Egy r=0.09m sugarú vékony falú rézcső belsejében, a tengelytől d=0.03m távolságra, azzal párhuzamosan egy vékony rézvezeték helyezkedik el. Mindkét vezető elég hosszú és I=5A nagyságú egyenáram folyik bennük, de ellenkező irányban. Mekkora az eredő mágneses térerősség nagysága a tengelyben?

Megoldás

66. Feladat: Végtelen, egyenes vezető, és vezetőkeret kölcsönös induktivitása.

Egy a = 0.05m oldalhosszúságú négyzet hossztengelyétől d = 0.12m távolságban (tehát két oldalával párhuzamosan, kettőre pedig merőlegesen, a vezetőkeret fölött), egy végtelen hosszúságú, I áramot szállító vezeték halad. Határozza meg az egyenes vezető és a vezetőkeret közötti kölcsönös indukció együtthatót!

Megoldás

Távvezetékek (TV)

68. Feladat: Mindkét végén nyitott ideális távvezeték rezonancia frekvenciája

Melyik az a legkisebb frekvencia, amelyen rezonancia léphet fel egy mindkét végén nyitott, l=5km hosszúságú, ideális légszigetelésű távvezetéken?

Megoldás

70. Feladat: Szakadással lezárt TV áram amplitúdó nagysága

Egy ideális légszigetelésű TV ismert hullámimpedanciája 500 Ohm. A távvezeték végén a szakadáson mért feszültség amplitúdója U2=180V. Mekkora a távvezeték végétől x=500 méterre az áramerősség amplitúdója, ha tudjuk, hogy a frekvencia 1 MHz.

Megoldás

72. Feladat: Lecher vezeték hullámimpedanciájának számítása

Egy ideális Lecher vezeték hullámimpedanciája kezdetben 400 ohm. Eltávolítjuk egymástól a vezetékpárt, ekkor a vezeték hosszegységre jutó soros impedanciája 1,5-szeresére nő. Mennyi lesz ekkor a vezeték hullámimpedanciája?

Megoldás

73. Feladat: Ideális TV lezárásának számítása

Egy ideális távvezetek hullámimpedanciája Z0=50Ω. Az állóhullámarány σ=3, a TV lezárása egy R rezisztancia. R milyen értékeket vehet fel? Ha a lezárást kicseréljük egy C kondenzátorra, milyen értékűnek válasszuk, hogy az állóhullámarány megmaradjon? (ω=1051s)

Megoldás

78. Feladat: Ideális távvezeték állóhullámarányának számítása

Egy ideális távvezeték mentén a feszültség komplex amplitúdója az U(z)=(3+4j)ejβz+(2j)ejβz függvény szerint változik. Adja meg az állóhullámarányt!

Megoldás

81. Feladat: Egyenfeszültséggel gerjesztett TV megadott feszültségű pontjának meghatározása

Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: R=20mΩm és G=5μSm. Egy U0 egyenfeszültségű feszültségforrást kapcsolunk rá.

Milyen lesz a kialakuló hullámforma a távvezetéken? Határozza meg azt a z távolságot, ahol a feszültség U0/2 lesz!

Megoldás


82. Feladat: Ideális távvezeték bemeneti impedanciája

Egy ideális, légszigetelésű l hosszúságú, Z0 hullámimpedanciájú távvezeték vezetett hullámhossza λ=8l

Mekkora a távvezeték elején a bemeneti impedancia, ha a távvezeték végén a lezárás egy L=Z0ω induktivitású ideális tekercs?

Megoldás

83. Feladat: Ideális távvezeték meddő teljesítménye

Egy ideális, légszigetelésű l=83.2m hosszúságú, Z0=50Ω hullámimpedanciájú távvezeték vezetett hullámhossza λ=75m. A távvezeték bemenetére egy U=100V amplitúdójú, ω körfrekvenciájú feszültséggenerátort kapcsolunk, miközben szakadással zárjuk le a másik oldalt.

Mekkora a távvezeték által felvett meddő teljesítmény?

Megoldás

85. Feladat: Távvezeték állóhullámaránya

Egy távvezeték hullámimpedanciája 500Ω, a vezeték végén a feszültség és az áram amplitúdója 1kV és 2A. Mit mondhatunk a reflexiós tényezőről? Mekkora a távvezetéken az állóhullámarány lehető legkisebb értéke?

Megoldás

86. Feladat: Számolás az ideális TV lánckarakterisztikájának I. egyenletével

Adott egy ideális távvezeték, melynek hullámimpedanciája 50Ω, hossza pedig λ8. A távvezeték végén adott az áram és a feszültség komplex amplitúdója: 2A illetve 500V.
Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején!

Megoldás


87. Feladat: Számolás az ideális TV lánckarakterisztikájának II. egyenletével

Adott egy ideális távvezeték, melynek hullámimpedanciája 50Ω, hossza pedig λ3. A távvezeték vége szakadással van lezárva, melyen a feszültség komplex amplitúdója j150V.
Határozzuk meg az áramerősség komplex amplitúdóját a távvezeték elején!

Megoldás


88. Feladat: Ideális TV bemeneti impedanciájának helyfüggvénye

Egy ideális távvezeték hullámimpedanciája Z0=400Ω, lezárása pedig egy Z2=j400Ω reaktanciájú kondenzátor. A távvezeték fázisegyütthatója β=0.21m.

Adja meg a bemeneti impedanciát a lezárástól való x távolság függvényében. Határozza meg, milyen helyeken lesz a bemeneti impedancia értéke 0.

Megoldás

Indukálási jelenségek

94. Feladat: Zárt vezetőkeretben indukált áram effektív értéke

Egy R=5Ω ellenállású zárt vezetőkeret fluxusa Φ(t)=30sin(ωt)mVs, ahol ω=1krads. Mekkora a keretben folyó áram effektív értéke?

Megoldás


95. Feladat: Zárt vezetőgyűrűben indukált áram időfüggvénye

Adott egy R ellenállású vezetőgyűrű a lap síkjában. A gyűrű által határolt mágneses fluxus időfüggvénye: Φ(t)=Φ0+Φ1sin(ωt).

Adja meg a a gyűrűben indukált áram i(t) időfüggvényét, ha a fluxus a papír síkjából kifelé mutató indukció vonalak mentén pozitív értékű.

Volt egy ábra is: A lap síkjában a vezetőgyűrű, a mágneses indukcióvonalak a lap síkjára merőlegesek és a bejelölt áram referenciairánya pedig az óramutató járásával megegyező irányú.

Megoldás


98. Feladat: Zárt vezetőhurokban indukált feszültség

Az xy síkon helyezkedik el egy r=3m sugarú, kör alakú, zárt L görbe. A mágneses indukció a térben homogén és z irányú komponense Δt=40ms idő alatt B=0.8T értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az L görbe mentén?

Megoldás


99. Feladat: Zárt vezetőhurokban disszipálódó összes energia

R ellenállású zárt vezetőkeret fluxusa 0<t<T intervallumban ismert Φ(t) szerint változik. Fejezze ki az intervallumban a keretben disszipálódó összes energiát!

Megoldás

100. Feladat: Hosszú egyenes vezető környezetében lévő zárt vezetőkeretben indukált feszültség

Egy hosszú egyenes vezetőtől d=15m távolságban egy r=0,25m sugarú kör alakú zárt vezető hurok helyezkedik el. A vezető és a hurok egy síkra illeszkednek, a közeg pedig levegő.

Mekkora az indukált feszültség, ha a vezetőben folyó áram 50Aμs sebességgel változik.

Megoldás


101. Feladat: Zárt vezetőhurokban indukált feszültség

Adott egy L zárt görbe a lap síkjában. A mágneses indukcióvonalak a lap síkjára merőlegesek. A görbe által határolt mágneses fluxus időfüggvénye: Φ(t)=Φ0t2T,ha0<t<T.

Mekkora lesz az indukált feszültség nagysága amikor t=T/3?

Megoldás


Elektromágneses síkhullám jó vezetőben

105. Feladat: Hengeres vezetőben adott mélységben a térerősség amplitúdója és fázisa

Egy r sugarú hengeres vezető anyagban a behatolási mélység δ<<r. A henger felszínén az elektromos térerősség amplitúdója E0, kezdőfázisa pedig 0rad.

A felszíntől h távolságban térerősség amplitúdója E02. Mennyi ilyenkor a fázisa a térerősségnek?

Megoldás


106. Feladat: Koaxiális kábel váltóáramú ellenállása

Egy koaxiális kábel magjának sugara r1=2mm, a köpenyének belső sugara r2=6mm, a külső sugara pedig r3=7mm. A mag és a köpeny vezetőképessége egyaránt σ=57MS. A behatolási mélység a kábelre kapcsolt generátor frekvenciáján δ=102μm.

Adja meg az elrendezés hosszegységre eső váltóáramú ellenállását.

Megoldás

107. Feladat: Hengeres vezetőben disszipált hőteljesítmény

Egy A=1.5mm2 keresztmetszetű, l=3m hosszú hengeres vezetőben I=10A amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység δ=9.7mm, a fajlagos vezetőképesség pedig σ=3.7107Sm. Mennyi a vezetőben disszipált hőteljesítmény?

Megoldás


109. Feladat: Hengeres vezető belsejében az elektromos térerősség

Egy r=2mm sugarú, hosszú hengeres vezető σ=35MSm fajlagos vezetőképességű anyagból van, a behatolási mélység δ=80μm. A térerősség időfüggvénye a vezető felszínén E(t)=10cos(ωt)n0. Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos. Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!

Megoldás


111. Feladat: Behatolási mélység

Vezetőben terjedő síkhullám elektromos térerőssége minden 3 mm után a felére csökken. Határozza meg a behatolási mélységet, a csillapítási tényezőt és a fázistényezőt!

Megoldás


112. Feladat: Vezető közeg hullámimpedanciája

Egy μr=1 relatív permeabilitású vezetőben ω=1041s körfrekvenciájú síkhullám terjed. Tudjuk a terjedési együttható abszolút értékét, ami |γ|=51mm.

Mi a hullámimpedancia abszolút értéke?

Megoldás

114. Feladat: Teljesítményváltozás

Egy jó vezető peremén a teljesítménysűrűség 40W/m^3. A peremtől 5 mm távolságban viszont már csak 8 W/m^3.Adja meg a behatolási mélységet!


116. Disszipált teljesítmény alumíniumvezetőben

Egy hengeres r=2mm sugarú és L=8m hosszúságú alumínium vezetőben I=3A amplítúdójú szinuszos áram folyik. A vezetőben mért behatolási mélység δ=60μm , határozza meg a vezető által disszipált teljesítményt, ha σ=35*106S/m!

Megoldás

Elektromágneses hullám szigetelőben

119. Feladat: Közeg hullámimpedanciájának számítása

Egy adott μr=5 relatív permeabilitású közegben síkhullám terjed ω=10Mrads körfrekvenciával. A terjedési együttható értéke: γ=0.1j1m
Adja meg a közeg hullámellenállásának értékét!

Megoldás

120. Feladat: Felületen átáramló hatásos teljesítmény számítása

Homogén vezető végtelen féltérben síkhullám terjed a határfelületre merőlegesen. E = 25mV/m, H= 5A/m. Adja meg egy adott, a z=0 határfelületen levő A=3m^2 felületre az azon átáramló hatásos teljesítményt!

Megoldás

121. Feladat: EM hullám elektromos térerősségvektorából mágneses térerősségvektor számítása

Egy levegőben terjedő elektromágneses hullám komplex elektromos térerősségvektora: E=(5ey12ez)ejπ/3kVm
Adja meg a H komplex mágneses térerősségvektort!

Megoldás


125. Feladat: Síkhullám közeghatáron disszipált hatásos teljesítménye

Egy levegőben terjedő síkhullám merőlegesen esik egy Z0=200Ω hullámimpedanciájú, ideális szigetelő közeg határfelületére.
A szigetelő közeg a teljes végtelen félteret kitölti, a határfelületen pedig a mágneses térerősség amplitúdója H=0.3Am.

Adja meg a határfelület 3m2 nagyságú felületén átáramló hatásos teljesítmény!

Megoldás

126. Feladat: Síkhullám közeghatáron, elektromos térerősség amplitúdójának meghatározása

Egy levegőben terjedő síkhullám merőlegesen esik egy Z0=200Ω hullámimpedanciájú, végtelen kiterjedésű ideális szigetelő féltér határfelületére. A szigetelő egy A=2m2 nagyságú felületén disszipálódó hatásos teljesítmény P=10W. Mekkora az elektromos térerősség amplitúdója a szigetelőben?

Megoldás

129. Feladat: Elektromágneses síkhullám közeghatáron

εr=2.25 relatív permittivitású szigetelőben terjedő elektromágneses síkhullám merőlegesen esik egy levegővel kitöltött végtelen féltér határfelületére.
A határfelületen az elektromos térerősség amplitúdója E=250Vm.

Adja meg a H+ értékét a közeghatáron, az első közegben.

Megoldás

130. Feladat: Elektromágneses síkhullám ideális szigetelőben

Egy ideális szigetelőben terjedő elektromágneses hullám időfüggvénye: E(x,t)=100cos(1.1t7.5x)exVm. Az idő mértékegysége μs, a távolságé km.

Határozza meg a közeg dielektromos állandóját!

Megoldás

134. Feladat: Elektromágneses síkhullám szigetelő határfelületén

Levegőben terjedő síkhullám merőlegesen esik egy 200 Ω hullámimpedanciájú ideális szigetelővel kitöltött végtelen féltér határfelületére. Mekkora a levegőben az elektromos térerősség maximális amplitúdója, ha a minimális amplitúdó levegőben 80 Vm?

Megoldás

135. Feladat: Elektromágneses síkhullám által gerjesztett áramsűrűség

Egy levegőben terjedő síkhullám merőlegesen esik egy végtelen kiterjedésű fémsík felületére. A síktól λ8 távolságra az elektromos térerősség komplex amplitúdója 500Vm. Számítsa ki a felületi áramsűrűség nagyságát!

Megoldás

136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása

Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:E=E0*(ex*cos(wt)+3*ey*cos(wtpi/6)).Adja meg a mágneses térerősség x irányú komponensét!

Megoldás

Poynting-vektor

137. Feladat: Elektromos energiasűrűség időbeli átlagából a Poynting-vektor időbeli átlagának számítása

Levegőben síkhullám terjed a pozitív z irányba. A tér tetszőleges pontjában az elektromos energiasűrűség időbeli átlaga w=9μJm3.

Adja meg a Poynting-vektor időbeli átlagát!

Megoldás

142. Feladat: Hertz-dipólus távoltérben

Levegőben álló Hertz-dipólus távolterében az elektromos térerősség amplitúdója az antennától r távolságban, az antenna tengelyétől mért ϑ elevációs szög alatt E(r,ϑ)=200Vrsinϑ. Adja meg az antenna által kisugárzott összes hatásos teljesítményt! (D=1,5)

Megoldás

143. Feladat: Hertz-dipólus által adott irányban kisugárzott teljesítmény

Egy Hertz-dipólus az origó síkjában ϑ=0 szögben áll. Írja fel az összes kisugárzott teljesítményt ϑ{0,π2} tartományban a Poynting-vektor és a Hertz-dipólus irányhatásának segítségével!

Megoldás


149. Feladat: Koaxiális kábelben áramló teljesítmény

Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:

E(r)=U0rer és H(r)=I0reφ

(er,eφ és ez a radiális, φ és z irányú egységvektorok)

Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara r1, a külső vezető belső sugara r2, a vezetők ideálisak, a kábel tengelye a z irányú.

Megoldás