„Jelek és jelfeldolgozás kvíz” változatai közötti eltérés
A VIK Wikiből
a Sortörések javítása |
a Visszavontam a saját szerkesztésemet (oldid: 205594) – nem ezzel volt a gond Címke: Visszavonás |
||
| 32. sor: | 32. sor: | ||
#<math>-4\varepsilon(t)(e^{-2t})</math> | #<math>-4\varepsilon(t)(e^{-2t})</math> | ||
==Adott egy elsőrendű, folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának normálalakja: <math>\begin{cases} x'(t)=2x(t)+3u(t) \\ y(t)=-x(t) \\ \end{cases}</math> Adja meg a rendszer állapotváltozóinak <math>x(t)</math> közelítő számításához szolgáló előrelépő Euler-séma formuláját!== | ==Adott egy elsőrendű, folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának normálalakja: <math>\begin{cases} | ||
x'(t)=2x(t)+3u(t) \\ | |||
y(t)=-x(t) \\ | |||
\end{cases}</math> Adja meg a rendszer állapotváltozóinak <math>x(t)</math> közelítő számításához szolgáló előrelépő Euler-séma formuláját!== | |||
{{Kvízkérdés|típus=egy|válasz=4}} | {{Kvízkérdés|típus=egy|válasz=4}} | ||
| 40. sor: | 43. sor: | ||
#<math>x(t_k+h_k)\approx(1+2h_k)x(t_k)+3h_ku(t_k)</math> | #<math>x(t_k+h_k)\approx(1+2h_k)x(t_k)+3h_ku(t_k)</math> | ||
==Adott egy elsőrendű, folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának normálalakja: <math>\begin{cases} x'(t)=3x(t)+2u(t) \\ y(t)=-x(t) \\ \end{cases}</math> Adja meg a rendszer állapotváltozóinak <math>x(t)</math> közelítő számításához szolgáló előrelépő Euler-séma formuláját!== | ==Adott egy elsőrendű, folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának normálalakja: <math>\begin{cases} | ||
x'(t)=3x(t)+2u(t) \\ | |||
y(t)=-x(t) \\ | |||
\end{cases}</math> Adja meg a rendszer állapotváltozóinak <math>x(t)</math> közelítő számításához szolgáló előrelépő Euler-séma formuláját!== | |||
{{Kvízkérdés|típus=egy|válasz=2}} | {{Kvízkérdés|típus=egy|válasz=2}} | ||
| 138. sor: | 144. sor: | ||
#<math>\bar X=2e^{-j0,25}</math> | #<math>\bar X=2e^{-j0,25}</math> | ||
#<math>\bar X=2e^{-j1,25}</math> | #<math>\bar X=2e^{-j1,25}</math> | ||
==Egy diszkrét idejű jel időfüggvénye <math>x[k]=5\cos[0,5\pi k-0,5]</math>. Adja meg a jel fazorát (komplex csúcsértékét)!== | ==Egy diszkrét idejű jel időfüggvénye <math>x[k]=5\cos[0,5\pi k-0,5]</math>. Adja meg a jel fazorát (komplex csúcsértékét)!== | ||
{{Kvízkérdés|típus=egy|válasz=3}} | {{Kvízkérdés|típus=egy|válasz=3}} | ||
A lap 2024. június 5., 19:40-kori változata
A csillaggal jelölt kérdések csak a vizsgán várhatóak.
Egy folytonos idejű, lineáris, invariáns rendszer impulzusválasza . Gerjesztés-válasz stabilis-e a rendszer?
- Nem, mert az impulzusválaszban szerepel a .
- Igen, mert az impulzusválasz belépő.
- Igen, mert az impulzusválasz abszolút integrálható.
- Nem, mert az impulzusválasz nem abszolút integrálható.
- Igen, mert az impulzusválaszban szereplő és együtthatója azonos nagyságú és ellentétes előjelű.
Egy folytonos idejű, lineáris, invariáns rendszer impulzusválasza . Gerjesztés-válasz stabilis-e a rendszer?
- Nem, mert az impulzusválaszban szerepel a .
- Igen, mert az impulzusválasz belépő.
- Igen, mert az impulzusválasz abszolút integrálható.
- Nem, mert az impulzusválasz nem abszolút integrálható.
- Igen, mert az impulzusválaszban szereplő és együtthatója azonos nagyságú és ellentétes előjelű.
Egy folytonos idejű rendszer impulzusválasza . Adja meg a rendszer ugrásválaszát!
- Nem létezik
Adott egy elsőrendű, folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának normálalakja: Adja meg a rendszer állapotváltozóinak közelítő számításához szolgáló előrelépő Euler-séma formuláját!
Adott egy elsőrendű, folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának normálalakja: Adja meg a rendszer állapotváltozóinak közelítő számításához szolgáló előrelépő Euler-séma formuláját!
Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: . Jellemezze a rendszert!
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
- invariáns
- kauzális
- lineáris
- gerjesztés-válasz stabil
Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: . Jellemezze a rendszert!
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
- invariáns
- kauzális
- lineáris
- gerjesztés-válasz stabil
Az alábbi ábrán látható egy folytonos idejű rendszert reprezentáló jelfolyamhálózat. Adja meg a rendszer állapotváltozós leírásának normálalakját!
Egy diszkrét idejű rendszer ugrásválasza . Adja meg a rendszer impulzusválaszát!
- Nem létezik
Egy diszkrét idejű rendszer rendszeregyenlete . Adja meg a rendszer átviteli karakterisztikáját!
- Nem létezik
Egy diszkrét idejű jel időfüggénye a . Állapítsa meg a jel periódushosszát!
A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.
- 3
- 4
- 5
- 6
Egy diszkrét idejű jel időfüggénye a . Állapítsa meg a jel periódushosszát!
A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.
- 3
- 4
- 5
- 6
Egy diszkrét idejű, lineáris, invariáns rendszer ugrásválasza . Adja meg a rendszer válaszát az gerjesztésre!
- Az nem belépő, ezért nem létezik
Egy diszkrét idejű jel időfüggvénye . Adja meg a jel fazorát (komplex csúcsértékét)!
Egy diszkrét idejű jel időfüggvénye . Adja meg a jel fazorát (komplex csúcsértékét)!
