„Felsőbb matematika villamosmérnököknek - Haladó lineáris algebra” változatai közötti eltérés

A VIK Wikiből
a szak frissítése
 
(25 közbenső módosítás, amit 7 másik szerkesztő végzett, nincs mutatva)
2. sor: 2. sor:
| név = Felsőbb matematika villamosmérnököknek<br>Haladó lineáris algebra
| név = Felsőbb matematika villamosmérnököknek<br>Haladó lineáris algebra
| tárgykód = TE90MX54
| tárgykód = TE90MX54
| szak = MSc Villamosmérnök
| szak = MSc Villamosmérnök, MSc Űrmérnök
| kredit = 3
| kredit = 3
| félév = 1. félév (tavasz)
| félév = 1. félév (tavasz)
12. sor: 12. sor:
| kiszh = nincs
| kiszh = nincs
| nagyzh = 2 db
| nagyzh = 2 db
| hf = 10-15 db
| hf =
| vizsga = nincs
| vizsga = nincs
| levlista =  
| levlista =  
20. sor: 20. sor:


A tantárgy a lineáris algebra azon fejezeteibe nyújt bevezetést, amelyek fontosak a haladó mérnöki tanulmányok szempontjából. Fontos cél, hogy a hallgatók alkalmazni tudják a lineáris algebra módszereit, eszközeit a felmerülő szakmai problémák megoldása során. A tantárgy követelményeit eredményesen teljesítő hallgatótól elvárható, hogy értse és konkrét feladatokban, példákon alkalmazni tudja a tanult fogalmakat, ismereteket, a gyakorlatban felmerülő helyzetekben ismerje fel a tanult módszerek alkalmazási lehetőségeit, legyen képes a szakirodalomra támaszkodva önállóan bővíteni a kapcsolatos ismereteit.
A tantárgy a lineáris algebra azon fejezeteibe nyújt bevezetést, amelyek fontosak a haladó mérnöki tanulmányok szempontjából. Fontos cél, hogy a hallgatók alkalmazni tudják a lineáris algebra módszereit, eszközeit a felmerülő szakmai problémák megoldása során. A tantárgy követelményeit eredményesen teljesítő hallgatótól elvárható, hogy értse és konkrét feladatokban, példákon alkalmazni tudja a tanult fogalmakat, ismereteket, a gyakorlatban felmerülő helyzetekben ismerje fel a tanult módszerek alkalmazási lehetőségeit, legyen képes a szakirodalomra támaszkodva önállóan bővíteni a kapcsolatos ismereteit.


== Követelmények ==
== Követelmények ==


*'''Jelenlét:''' Katalógus nincs, de a gyakorlatokon való jelenlét erősen ajánlott.
*'''Jelenlét:''' Katalógus nincs, de a gyakorlatokon való jelenlét erősen ajánlott.
*'''NagyZH:''' A félév során két nagyzárthelyit kell legalább 40%-osra teljesíteni. Mindkét zárthelyi 40 pontos és 60%-ban számolási, valamint 40%-ban elméleti példákból áll. Néhány pont erejéig bizonyítások is előfordulhatnak.
*'''NagyZH:''' A félév során két nagyzárthelyit kell legalább 40%-osra teljesíteni. Mindkét zárthelyi 50 pontos számolási, valamint elméleti példákból áll. Néhány pont erejéig bizonyítások is előfordulhatnak.
*'''Házi feladat:''' A félév során 10-15 darab 1-2 pontos házi feladatot kell 1-2 hetes határidőkkel megoldani. A házi feladatok leadása nem kötelező, nincs minimális követelmény, azonban pótlásra sincs lehetőség.
*'''Félévközi jegy:''' A félévközi jegy a két zárthelyi pontszámának összegéből adódik, a standard ponthatárok szerint.
*'''Félévközi jegy:''' A félévközi jegy a két zárthelyi kétszer 40 pontjának és a házi feladatok 20 pontra felskálázott összpontszámának összegéből adódik, a standard ponthatárok szerint. Fontos, hogy ugyan a házi feladatokból nincs minimális követelmény, azonban az összpontszámnak is el kell érnie a minimális 40%-ot.


== Segédanyagok ==
== Segédanyagok ==
*[http://www.math.bme.hu/~wettl/okt/linalg/2013/ Wettl-jegyzet] (folyamatosan frissül)
*[http://www.math.bme.hu/~wettl/okt/linalg/ Előadásdiák]
*[[Média:FmLinalg_jegyzet_2000_Meyer.pdf | Meyer - Linear Algebra - ez az eredetije a Wettl jegyzetnek, csak ebben több minden benne van (angol)]]
*[http://www.math.bme.hu/~wettl/okt/linalg/ Wettl-jegyzet] (folyamatosan frissül)
*[[Média:FmLinalg_tetelek_2010.pdf | tételkidolgozás 2010]]
*[[Média:FmLinalg_jegyzet_2000_Meyer.pdf | Meyer - Linear Algebra]] - A Wettl jegyzethez hasonló, csak bővebb (angol)
*[[Média:FmLinalg_jegyzet_2015_bizonyitasok.pdf | Bizonyítások vizsgára (2014/15 1. félév)]]
*[[Média:SVD.pdf | SVD segédlet]]
*[[Média:FmLinalg_jegyzet_2011.pdf | Hasznos adalék 2011: önadjungált és szimmetrikus trafók, kvadratikus alakok, bilineáris függvények...]]
*[[Média:FmLinalg_jegyzet_2015_bizonyitasok.pdf | Bizonyítások gyűjteménye]]
*[[Média:FmLinalg_jegyzet_2012_osszefoglalo.pdf | tematikus összefoglaló zh-ra, vizsgára 2012]]
*[[Média:FmLinalg_jegyzet_2012_osszefoglalo.pdf | Tematikus összefoglaló]]
*2010. ősz Wettl előadás
*[[Média:FmLinalg_jegyzet_2015_gyakorlat_1-4.pdf | 2014/15 tavaszi 1-4. gyakorlat ]] - A ZH előtti első konzultáción leadottakat is tartalmazza.
**[[Média:FmLinalg_jegyzet_2010_eloadas_1-3.pdf | 1-3]] [[Média:FmLinalg_jegyzet_2010_eloadas_4-5.pdf | 4-5]] [[Média:FmLinalg_jegyzet_2010_eloadas_6-7.pdf | 6-7]] [[Média:FmLinalg_jegyzet_2010_eloadas_8-9.pdf | 8-9]] [[Média:FmLinalg_jegyzet_2010_eloadas_10-11.pdf | 10-11]] [[Média:FmLinalg_jegyzet_2010_eloadas_12-13.pdf | 12-13]]
=== Előadások 2021/22 tavasz ===
*2010. ősz Farkas Barna gyakorlat
*[[Média:linalg_e1.pdf | E1 - Algebrai struktúrák, vektorterek]]
**[[Média:FmLinalg_jegyzet_2010_gyakorlat_1-4.pdf | 1-4]] [[Média:FmLinalg_jegyzet_2010_gyakorlat_5-6.pdf | 5-6]] [[Média:FmLinalg_jegyzet_2010_gyakorlat_7-9.pdf | 7-9]]
*[[Média:linalg_e2.pdf | E2 - Az elemi sorműveletek]]
*2015. tavaszi gyakorlat jegyzet
*[[Média:linalg_e3.pdf | E3 - Euklidészi tér]]
**[[Média:FmLinalg_jegyzet_2015_gyakorlat_1-4.pdf | 1-4 ]] (a ZH előtti első konzultáción leadottakat is tartalmazza)
*[[Média:linalg_e4.pdf | E4 - Merőlegesség]]
*[[Média:linalg_e5.pdf | E5 - Diagonizálhatóság]]
*[[Média:linalg_e6.pdf | E6 - Szinguláris értékek]]
*[[Média:linalg_e7.pdf | E7 - Jordan-féle normálalak]]
*[[Média:linalg_e8.pdf | E8 - Mátrixegyenletek]]
*[[Média:linalg_e9.pdf | E9 - Nemnegatív mátrixok]]
 
== Házi feladatok==
=== Néhány megoldott HF 2016/17 tavaszáról ===
*[[Media:hf_16_17_tavasz_elso.pdf|Első]]
*[[Media:hf_16_17_tavasz_masodik.pdf|Második]]
*[[Media:hf_16_17_tavasz_harmadik.pdf|Harmadik]]
*[[Media:hf_16_17_tavasz_negyedik.pdf|Negyedik]]
*[[Media:hf_16_17_tavasz_otodik.pdf|Ötödik]]
*[[Media:hf_16_17_tavasz_hatodik.pdf|Hatodik]]
*[[Media:hf_16_17_tavasz_hetedik.pdf|Hetedik]]
*[[Media:hf_16_17_tavasz_nyolcadik.pdf|Nyolcadik]]


== Első zárthelyi ==
== Első zárthelyi ==


=== Rendes ZH ===
=== Rendes ZH ===
 
*[[Media:zm1_22fm.pdf|2022 tavasz]]
[[Media:fm_haladólinalg_2015tavasz_ZH1.pdf|2014/15 tavasz]]
*[[Media:halado_linalg_1.zh_2019tav.pdf|2019 tavasz]]
*[[Media:fm_haladólinalg_2017tavasz_ZH1.pdf|2017 tavasz]]
*[[Media:fm_haladólinalg_2015tavasz_ZH1.pdf|2015 tavasz]]


=== Pót ZH ===
=== Pót ZH ===
 
*[[Media:fm_haladólinalg_2017tavasz_pótZH1.pdf|2017 tavasz]]
[[Media:fm_haladólinalg_2015tavasz_pótZH1.pdf|2014/15 tavasz]]
*[[Media:fm_haladólinalg_2015tavasz_pótZH1.pdf|2015 tavasz]]


== Második zárthelyi ==
== Második zárthelyi ==
56. sor: 74. sor:
=== Rendes ZH ===
=== Rendes ZH ===


[[Media:fm_haladólinalg_2015tavasz_ZH2.pdf|2014/15 tavasz]]
*[[Media:fm_haladólinalg_2015tavasz_ZH2.pdf|2014/15 tavasz]]
*[[Media:fm_haladólinalg_2019tavasz_ZH2.pdf|2018/19 tavasz]]


=== Pót ZH ===
=== Pót ZH ===


[[Media:fm_haladólinalg_2015tavasz_pótZH2.pdf|2014/15 tavasz]]
*[[Media:fm_haladólinalg_2015tavasz_pótZH2.pdf|2014/15 tavasz]]
*[[Media:fm_haladólinalg_2017tavasz_pótZH2.pdf|2016/17 tavasz]]
== 2015 előtti számonkérések ==


== 2015 előtti számonkérések ==
2015 tavaszától megváltozott az MSc képzés mintaterve, melynek keretei között a haladó lineáris algebra egy önálló, félévközi jegyes tárgy lett. Korábban egy másik felsőbb matematika tárggyal közösen, negyedéves bontásban volt megtartva, zárthelyivel és vizsgával. Mivel a tananyag csak kismértékben változott az átszervezéskor, így a régi ZH és vizsga feladatsorok továbbra is jó alapot szolgáltatnak a felkészüléshez.


{| style="border-spacing: 1em; width: 75%;"
{| style="border-spacing: 1em; width: 75%;"
108. sor: 129. sor:
|}
|}


 
== Vélemények ==
 
* A ZH-kon sok, számolás és időigényes feladat van, így könnyen ki lehet csúszni az időből. Ezen kívül szükséges az elmélet alapos ismerete is, ami hangsúlyos részét képezi a számonkéréseknek, egyes tételeknél elvárt a bizonyítások ismerete is. Összességében ez a tárgy nagyon nem ingyenkredit, így érdemes vigyázni vele, és nem alábecsülni a nehézségét.
 
 
 
=== Zárthelyi ===
*2008. zh megoldással együtt [[Média:FmLinalg_zh_2008_a.pdf | A csoport]]  --  [[Média:FmLinalg_zh_2008_b.pdf | B csoport]]
*[[Média:FmLinalg_zh_2009_b.JPG | 2009. zh B csoport]]
*[[Média:FmLinalg_zh_2010.png | 2010. zh]]  --  [[Média:FmLinalg_zh_2010_mo.pdf | megoldással együtt]]
*[[Média:FmLinalg_zh_2010_pot.pdf‎ | 2010. pótzh megoldással együtt]]
*[[Média:FmLinalg_zh_2011.jpg | 2011. zh]]  --  [[Média:FmLinalg_zh_2011_mo.pdf | megoldással együtt]]
*[[Média:FmLinalg_zh_2011_pot.pdf‎ | 2011. pótzh megoldással együtt]]
*[[Média:FmLinalg_zh_2012_mo.pdf‎ | 2012. zh megoldással együtt]]
*[[Média:FmLinalg_zh_2013.pdf | 2013. zh]]  --  [[Média:FmLinalg_zh_2013_mo.pdf | megoldással együtt]]
*[[Média:FmLinalg_zh_2014.pdf | 2014. zh megoldással együtt]]
 
=== Vizsga ===
*[[Média:FmLinalg_vizsga_2008.pdf‎ | 2008.01.14. (2010-es mintavizsga)]]
*[[Média:FmLinalg_vizsga_20101220.pdf‎ | 2010.12.20.]]  --  [[Média:FmLinalg_vizsga_20101220_mo.pdf‎ | hivatalos megoldás]]
*2011.01.03. hivatalos megoldással együtt: [[Média:FmLinalg_vizsga_20110103_a.pdf‎ | A]], [[Média:FmLinalg_vizsga_20110103_b.pdf‎ | B]]
*2011.01.10. hivatalos megoldással együtt: [[Média:FmLinalg_vizsga_20110110_a.pdf‎ | A]], [[Média:FmLinalg_vizsga_20110110_b.pdf‎ | B]]
*[[Média:FmLinalg_vizsga_20111220.pdf‎ | 2011.12.20. hivatalos megoldással együtt]]
*[[Média:FmLinalg_vizsga_20121218.pdf | 2012.12.18. hivatalos megoldással együtt]]
*[[Média:FmLinalg_vizsga_20130108.pdf | 2013.01.08. hivatalos megoldással együtt]]
*[[Média:FmLinalg_vizsga_20130115.pdf | 2013.01.15.]]
*[[Média:FmLinalg_vizsga_20130122.pdf | 2013.01.22.]]
*[[Média:FmLinalg_vizsga_20140107.pdf | 2014.01.07.]]
*[[Média:FmLinalg_vizsga_20140114.pdf | 2014.01.14.]]
*[[Média:FmLinalg_vizsga_20140121.pdf | 2014.01.21. hivatalos megoldással együtt]]
*[[Média:FmLinalg_vizsga_20140128.pdf | 2014.01.28. hivatalos megoldással együtt]]
*[[Média:FmLinalg_vizsga_20150106_mo.pdf | 2015.01.06. hivatalos megoldással együtt]]
*[[Média:FmLinalg_vizsga_20150113_mo.pdf | 2015.01.13. hivatalos megoldással együtt]]
 
===Részletes nemhivatalos megoldások az eddigi vizsgák néhány feladatához===
*[[Média:FmLinalg_kidolgozas_20080114.pdf‎ | 2008.01.14. vizsga 2,4,5,7,8,9,10,11,13,15,25 feladatának megoldása]]
*[[Média:FmLinalg_kidolgozas_20101220.pdf‎ | 2010.12.20. vizsga 7,8,9,11,12,13,14,15,16 feladatának megoldása]]
*[[Média:FmLinalg_kidolgozas_20110103.pdf‎ | 2011.01.03. vizsga 3,4,7,8,11,12 feladatának megoldása]]
*[[Média:FmLinalg_kidolgozas_20111220.pdf‎ | 2011.12.20. vizsga 9,12 feladatának megoldása]]
*[[Média:FmLinalg_kidolgozas_20120103.JPG‎ | 2012.01.03. vizsga 10-es feladatának megoldása]]


{{Lábléc_-_Villamosmérnök_mesterszak}}
{{Lábléc_-_Villamosmérnök_mesterszak}}

A lap jelenlegi, 2022. szeptember 6., 16:47-kori változata

Felsőbb matematika villamosmérnököknek
Haladó lineáris algebra
Tárgykód
TE90MX54
Általános infók
Szak
MSc Villamosmérnök, MSc Űrmérnök
Kredit
3
Ajánlott félév
1. félév (tavasz)
Keresztfélév
nincs
Tanszék
Algebra tanszék
Követelmények
Jelenlét
nem kötelező
Labor
nincs
KisZH
nincs
NagyZH
2 db
Vizsga
nincs
Elérhetőségek

A tantárgy a lineáris algebra azon fejezeteibe nyújt bevezetést, amelyek fontosak a haladó mérnöki tanulmányok szempontjából. Fontos cél, hogy a hallgatók alkalmazni tudják a lineáris algebra módszereit, eszközeit a felmerülő szakmai problémák megoldása során. A tantárgy követelményeit eredményesen teljesítő hallgatótól elvárható, hogy értse és konkrét feladatokban, példákon alkalmazni tudja a tanult fogalmakat, ismereteket, a gyakorlatban felmerülő helyzetekben ismerje fel a tanult módszerek alkalmazási lehetőségeit, legyen képes a szakirodalomra támaszkodva önállóan bővíteni a kapcsolatos ismereteit.


Követelmények

  • Jelenlét: Katalógus nincs, de a gyakorlatokon való jelenlét erősen ajánlott.
  • NagyZH: A félév során két nagyzárthelyit kell legalább 40%-osra teljesíteni. Mindkét zárthelyi 50 pontos számolási, valamint elméleti példákból áll. Néhány pont erejéig bizonyítások is előfordulhatnak.
  • Félévközi jegy: A félévközi jegy a két zárthelyi pontszámának összegéből adódik, a standard ponthatárok szerint.

Segédanyagok

Előadások 2021/22 tavasz

Házi feladatok

Néhány megoldott HF 2016/17 tavaszáról

Első zárthelyi

Rendes ZH

Pót ZH

Második zárthelyi

Rendes ZH

Pót ZH

2015 előtti számonkérések

2015 tavaszától megváltozott az MSc képzés mintaterve, melynek keretei között a haladó lineáris algebra egy önálló, félévközi jegyes tárgy lett. Korábban egy másik felsőbb matematika tárggyal közösen, negyedéves bontásban volt megtartva, zárthelyivel és vizsgával. Mivel a tananyag csak kismértékben változott az átszervezéskor, így a régi ZH és vizsga feladatsorok továbbra is jó alapot szolgáltatnak a felkészüléshez.

Zárthelyi

Rendes zárthelyi

Pót zárthelyi

Vizsga

Vélemények

  • A ZH-kon sok, számolás és időigényes feladat van, így könnyen ki lehet csúszni az időből. Ezen kívül szükséges az elmélet alapos ismerete is, ami hangsúlyos részét képezi a számonkéréseknek, egyes tételeknél elvárt a bizonyítások ismerete is. Összességében ez a tárgy nagyon nem ingyenkredit, így érdemes vigyázni vele, és nem alábecsülni a nehézségét.


1. félév (tavasz)
2. félév (ősz)
Egyéb
Főspecializációk