„Deep Learning a gyakorlatban Python és LUA alapon” változatai közötti eltérés
a →Házi |
a →Tippek |
||
| (Egy közbenső módosítás ugyanattól a felhasználótól nincs mutatva) | |||
| 33. sor: | 33. sor: | ||
Ha nem megajánlott jegyre mész: | Ha nem megajánlott jegyre mész: | ||
A vizsga | A vizsga elsősorban szóbeli, 3 témakört (melyből az első fixen a backpropagation) kellett papíron alaposan kidolgozni, majd ezekről szóban beszélni és kérdésekre válaszolni. Jó jegyhez alaposan kell tudni és érteni a dolgokat, gyakorlati szinten is! | ||
Pár főbb téma ami előfordulhat: convnet, VAE, GAN, RNN, BPTT, LSTM, hiperparaméter optimalizálás. | Pár főbb téma ami előfordulhat: convnet, VAE, GAN, RNN, BPTT, LSTM, hiperparaméter optimalizálás. | ||
== Tippek == | == Tippek == | ||
A tárgy oktatói mindenkit ösztönöznek a megajánlott jegy megszerzésére. Kis házi feladatok 70%-os teljesítésével és az előadásokon Kahoot! kvíz kitöltésével | A tárgy oktatói mindenkit ösztönöznek a megajánlott jegy megszerzésére. Kis házi feladatok 70%-os teljesítésével és az előadásokon Kahoot! kvíz kitöltésével +1 jegyet lehet szerezni. | ||
Ha még nem programoztál soha Pythonban, erősen ajánlott a kurzus elkezdése előtt megismertetni magad vele és a NumPy könyvtárral. A tárgyhonlapon találsz rengeteg hasznos forrást szinte mindenhez. A projekteket bármilyen keretrendszerben elkészítheted, de gyakorlaton elősorban Keras-al és Tensorflowval fogsz találkozni. A lineáris algebra alapjait is jó, ha átnézed első előadás előtt. | Ha még nem programoztál soha Pythonban, erősen ajánlott a kurzus elkezdése előtt megismertetni magad vele és a NumPy könyvtárral. A tárgyhonlapon találsz rengeteg hasznos forrást szinte mindenhez. A projekteket bármilyen keretrendszerben elkészítheted, de gyakorlaton elősorban Keras-al és Tensorflowval fogsz találkozni. A lineáris algebra alapjait is jó, ha átnézed első előadás előtt. | ||