„Bode-diagram kézi rajzolása” változatai közötti eltérés

A VIK Wikiből
a (a)
 
(32 közbenső módosítás, amit 8 másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
A '''Bode-diagram kézi rajzolása''' több tantárgyból is előjöhet. Ehhez nyújt segítséget az alábbi leírás, melyet [[ZrupkoAndras|Ndroo]] készített a Keviczky-féle Szabályozástechnika-könyv és a [https://wiki.sch.bme.hu/pub/Infoalap/SzabTech/BodePlots.pdf BodePlots.pdf] alapján
A '''Bode-diagram kézi rajzolása''' több tantárgyból is előjöhet. Ehhez nyújt segítséget az alábbi leírás, melyet [[ZrupkoAndras|Ndroo]] készített a Keviczky-féle Szabályozástechnika-könyv alapján.
 
<div class="noautonum">__TOC__</div>


==A Bode-diagram készítésének lépései==
==A Bode-diagram készítésének lépései==
#'''Átviteli függvény átalakítása:''' Ha a feladatban ehhez hasonló alak van: <math>L(s)=10\frac{s+10}{s^3+51s^s+50s}</math>, akkor át kell alakítani ilyen alakká: <math>L(s)=\frac{2(1+0,1s)}{(s(1+s)(1+0,02s))}</math>. Először a számlálót és a nevezőt is szorzattá kell alakítani, aztán annyit emelünk ki, hogy az s nélküli tagok értéke 1 legyen: <math>L(s)=10\frac{s+10}{s^3+51s^s+50s}=10\frac{s+10}{s(s+1)(s+50)}=10\frac{10}{50}\frac{1+0,1s}{s(1+s)(1+0,02s)}=\frac{2(1+0,1s)}{s(1+s)(1+0,02s)}</math>. Így minden tényező <math>1+sT</math> alakú lesz; ha eleve így adták meg, akkor ezt a lépést ki kell hagyni.
 
#'''Pólusok/zérusok felírása:''' Zérusok: azok a helyek ahol a számláló értéke 0 lesz, pólusok: azok a helyek, ahol a nevező értéke lesz 0. Minden szorzatalakra fel kell írni a következőt: <math>1+sT=0</math>, itt lesz a számláló/nevező értéke nulla, pl.: <math>1+0,02s=0 ~\rightarrow~ s=-50</math> az egyik pólus, a többi: <math>s=-1</math>-nél, <math>s=0</math>-nál van, a zérus: <math>s=-10</math>-nél van.
=== 1. Átviteli függvény átalakítása ===
#'''Fel/letörés:''' Ez az amplitúdó-körfrekvencia görbéhez kell (a dB-es). A pontok, ahol a görbe fel/letörik: <math>1+sT</math> alakból vagy s abszolútértéke, vagy <math>\frac{1}{T}</math> értéke (a kettő abszolútértékben ugyanaz, úgy számold ki, ahogy jól esik). A görbe feltörik, ha zéruson megy át, ilyenkor a meredeksége 20dB/dekáddal nő (a függvény meredekéségét magasabbra rajzolod), illetve letörik, ha póluson megy át, a meredeksége itt 20dB/dekáddal csökken.
 
#'''A görbe kezdő meredeksége:''' ezt az integrátorokból (szimpla s szorzótagok az átviteli függvényben) nézhető meg, ha nincs ilyen: a meredekség 0, a görbe vízszintesen indul, ha egy van (egyszeres integrátor): -20dB/dekád a kezdő meredekség, ha kettő van, azaz <math>s^2</math> van (kétszeres integrátor): -40dB/dekád. A fenti példában egyszeres integrátor van, azaz -20dB/dekád a kezdő meredekség.
Az aszimptotikus Bode-diagramm rajzolásához először "Bode normál alakra" kell hoznunk az átviteli függvényt:
#'''Az x tengely metszésének pontja:''' (vágási körfrekvencia, <math>\omega_c</math>): ezt a meredekség és az átviteli függvény szorzókonstansa (K) határozzák meg: ha a görbe meredeksége 0dB/dekád akkor nem metszi az x tengelyt (mert vízszintesen halad), ha -20dB/dekád, akkor K-nál metszi, ha -40dB/dekád, akkor <math>\sqrt{K}</math>-nál. Az egyes fel/letörések miatt úgy lehet nyomon követni, hol lesz a metszés helye, hogy megnézzük az integrátorokat/a kezdő meredekséget: ha K-ig nem változik a görbe meredeksége, akkor a meredekségnek megfelelően metszi (pl: egyszeres integrátor, K=5, ekkor -20dB/dekádos meredekséggel megy át az x tengelyen 5-nél), ha előtte megváltozik, akkor annak megfelelően (pl: kétszeres integrátor, K=16, 2-nél feltörik, ekkor 2-ig -40dB/dekád a meredekség, a tengelyt <math>\sqrt{16}</math>-nál metszené, de a feltörés miatt 2 után -20dB/dekáddal metszi az x tengelyt 16-nál.). A fenti példában K=2, egyszeres integrátor, -1-nél letörés van, ezért -40dB/dekád meredekséggel a <math>\sqrt{2}</math> pontban metszi.
 
#'''Amplitúdó-körfrekvencia görbe felrajzolása:''' ''(Lásd: könyv 88. old.)'' Itt az eddigieket kell összegyúrni eggyé, előbb bejelölöd a pontokat, ahol történik valami, majd utána rajzolod meg a görbét,  az y tengelyen <math>|L(j\omega|</math>, az x tengelyen <math>\omega</math> értékével.<br/>[[Fájl:Bode-diagram_amplitudo.jpg]]
 
#'''Fázisgörbe értéke:''' (ez a másik görbe, a <math>\varphi</math>-s, rendes nevén: fázis-körfrekvencia görbe) a görbéhez képzeljünk el sávokat, ahol 90° a lépték az egyes értékek közt. A fenti fel/letöréseknek megfelelően változik, ha feltörik, akkor az érték nő 90°-al, ha letörik, akkor csökken 90°-al. Viszont ez nem egyik pillanatról a másikba megy végbe, hanem "átmenetszerűen", rajzban ez azt jelenti, hogy fel/letörésnél már félúton van az új állapot felé.<br/>[[Fájl:Bode-diagram fazis.jpg]]
<math>
#'''Fázisgörbe kezdőértéke:''' ez az integrátorok, és az átviteli függvény szorzókonstansán múlik: a konstans ha pozitív, akkor 0° a kezdőérték, ha negatív, akkor -180°, az integrátor(ok) miatt 0-ban -90°-al jobban változik (-180°-al, ha kétszeres), illetve, ha a számlálóban volt egy szimpla s tag, akkor az 90°-al növeli. Pl: konstans negatív, egyszeres integrátor: -180°+(-90°)=-270°, konstans pozitív, számlálóban egy szimpla s: 0°+90°=90°. A fenti példában konstans pozitív, egyszeres integrátor: 0°-90°=-90°.
L(s) = {K \over s^i} \cdot {\prod_{k} \left( {1 + sT_k} \right) \cdot \prod_{m} \left( 1 + s \cdot 2 \xi_m T_m + s^2 T_m^2 \right) \over
#'''Fázistöbblet meghatározása:''' ''(Lásd: könyv 190-191. old)'' fázistöbblet fázis-körfrekvencia görbe értékének különbsége -180°-tól a vágási körfrekvenciánál. Azaz ahol a dB-es görbe metszi az x tengelyt, ott megnézed a <math>\varphi</math>-s görbe értéke mennyire tér el a -180°-os vonaltól. Ezt a meredekség határozza meg mekkora lesz: ha -20dB/dekáddal metszi az x tengelyt: a fázistöbblet biztosan pozitív ''(Lásd: könyv 191.old, 5.35 ábra)'', ha -40dB/dekáddal metszi: a fázistöbbletet nem lehet meghatározni biztosan, olyat rajzolsz, mint az 5.36-os ábrán, ha -60dB/dekáddal metszi: a fázistöbblet biztosan negatív, ekkor a 180°-os vonal alatt megy el. A fenti példában -40dB/dekád meredekséggel a <math>\sqrt{2}</math> pontban metszi az x tengelyt a dB-es függvény, ezért a fázistöbbletet nem tudjuk meghatározni biztosan, a stabilitás határhelyzetében van.
\prod_{l} \left( {1 + sT_l} \right) \cdot \prod_{n} \left( 1 + s \cdot 2 \xi_n T_n + s^2 T_n^2 \right)}
#'''Fázis-körfrekvencia görbe felrajzolása:''' <br/>[[Fájl:Bode-diagram fazis teljes.jpg]]
</math>
#'''Stabilis-e a rendszer:''' vagy azt nézed, hogy a fázistöbblet pozitív-e, vagy azt, hogy a jobboldali számsíkon van-e pólus: ha nincs, akkor stabilis.
 
#'''Statikus hiba:''' megnézed az integrátorok számát, az adja a típusszámot, és azt a sort írod le a táblázatból ''(Lásd: könyv 140. oldal)''.
 
<br/>
Ebből az alakból leolvasható a rendszer <math>K</math> körerősítése és <math>i</math> típusszáma (integrátorok száma). 
{| border="1"
 
|  Típusszám ||  0  ||  1  ||  2   
 
Ha tehát a feladatban ehhez hasonló alak van: <math>L(s)=\frac{10 \cdot (s+10)}{s^3+51s^2+50s}</math>, akkor át kell alakítani ilyen alakká: <math>L(s)={2\over s}\cdot \frac{(1+0.1s)}{(1+s)(1+0.02s)}</math>
 
 
Először a számlálót és a nevezőt is szorzattá kell alakítani, aztán annyit emelünk ki, hogy az "s" nélküli tagok értéke 1 legyen:
 
<math>L(s)=\frac{10 \cdot (s+10)}{s^3+51s^2+50s}=10\frac{s+10}{s(s+1)(s+50)}=10\frac{10}{50}\frac{1+0.1s}{s(1+s)(1+0.02s)}={2 \over s} \cdot \frac{(1+0.1s)}{(1+s)(1+0.02s)}</math>.
 
 
Így minden tényező <math>1+sT</math> alakú lesz. Ha eleve így adták meg, akkor ezt a lépést ki kell hagyni.
 
''Megjegyzés:'' Ha komplex konjugált gyökpárok is kijöttek volna a gyöktényezős felbontás során, akkor azok <math> 1 + s \cdot 2 \xi T + s^2 T^2</math> alakú tagokat hoztak volna be.
 
=== 2. Pólusok/zérusok felírása ===
 
Zérusok - Azok a helyek ahol a számláló értéke 0 lesz: <math>z_1=-10</math>
 
Pólusok - Azok a helyek, ahol a nevező értéke lesz 0: <math>p_1=0, \;p_2=-1, \;p_3=-50</math>
 
=== 3. Fel/letörések meghatározása ===
 
Ezek után készítsük el az alábbi táblázatot, melynek első sorában a pólusok és a zérusok abszolút értékük szerinti növekvő sorrendbe vannak rendezve (ezek lesznek a töréspontok):
 
{| class="wikitable"
|-
! Pólusok/zérusok<br/>abszolút értéke
! <math>|p_1|=0</math>
! <math>|p_2|=1</math>
! <math>|z_1|=10</math>
! <math>|p_3|=50</math>
|-
| Index
| style="text-align:center"|+1
| style="text-align:center"|+1
| style="text-align:center"|-1
| style="text-align:center"|+1
|-
| Multiplicitás
| style="text-align:center"|1
| style="text-align:center"|1
| style="text-align:center"|1
| style="text-align:center"|1
|}
 
Az index értéke zérus esetén -1, pólus esetén +1.
 
A multiplicitás pedig azt jelenti, hogy „hányszoros gyök”. Azaz például ha a -1 háromszoros gyöke lenne a nevezőnek, akkor a multiplicitása 3 lenne. Továbbá a komplex konjugált pólus/zérus-párok esetén mindkét gyök abszolút értéke ugyanaz, így azok alapból 2-szeres multiplicitásúnak számítanak.
 
 
A jelleggörbe meredeksége a következő képlet szerint alakul:
 
 
<math>\left( -20 {dB \over dek} \right) \cdot (multiplicitas) \cdot (index) </math>
 
 
Ez a meredekség érték mindig az előző meredekséghez hozzáadódik!
 
=== 4. A görbe kezdő meredeksége ===
 
Ha a rendszer tartalmaz integrátort (i>0), akkor a fenti képlet a kezdő meredekséget is tökéletesen megadja. Azaz 1 integrátornál a kezdő meredekség -20 dB/dek, 2 integrátornál -40 dB/dek...
 
Ha azonban nincs integrátor a rendszerben (i=0), akkor az amplitúdó görbe kezdő meredeksége zérus, azaz egy vízszintes szakasszal indul.
 
A fenti példában egyszeres integrátor van, azaz -20dB/dekád a kezdő meredekség.
 
(Ha esetleg olyan állna elő, hogy i<0, azaz a nincs 0 értékű pólus, de van legalább egy 0 értékű zérus, akkor a kezdő meredekség szintén a képlet szerint alakul. Azaz +20 dB/dek, +40 dB/dek.... )
 
=== 5. Az omega tengely metszésének pontja ===
 
Most már tudjuk, hogyan néz ki az aszimptotikus amplitúdó görbe menete, de még szükségünk van az <math>\omega</math> tengely metszéspontjára, azaz <math>\omega_c</math> vágási körfrekvencia értékére.
 
Ez legtöbb esetben a kezdeti meredekség és a körerősítés alapján meghatározható. Ha nincs integrátor a rendszerben (i=0), akkor a kezdeti szakasz vízszintes, így ez a módszer sajnos nem használható. Ha azonban i>0, akkor tudjuk, hogy az integrátor egyenese (van annak meghosszabbítása) <math>\sqrt[i]{K}</math> körfrekvencián metszi az <math>\omega</math> tengelyt. Ha ez előtt a pont előtt nincs töréspont, akkor a tényleges amplitúdógörbe is itt fogja metszeni az <math>\omega</math> tengelyt.
 
 
Jelen esetünkben azonban 1 integrátor van, tehát az integrátor egyenese (vagy annak meghosszabbítása) K=2-nél metszi a <math>\omega</math> tengelyt. Mivel azonban <math>\omega=1</math>-nél az integrátor egyenesének kezdeti -20 dB/dek meredekségéhez -20 dB/dek hozzáadódik a képletnek megfelelően, tehát még <math>\omega=2</math> előtt -40 dB/dek lesz a meredeksége, így a tényleges amplitúdó görbe nem 2-nél, hanem egy annál kisebb értéknél metszi az <math>\omega</math> tengelyt!
 
Az integrátor egyenese <math>\omega=1</math> körfrekvencián <math>log\left( { 2\over 1 } \right) dek \cdot 20 {db \over dek} = 6 dB</math> értéket vesz fel, hiszen <math>log\left( { 2\over 1 } \right)</math> dekád távolság van az 1 és 2 körfrekvencia értékek között, és <math>-20 {db \over dek}</math> az integrátor egyenesének meredeksége. Tudjuk, hogy a tényleges amplitúdó görbe <math>\omega=1</math> körfrekvenciától <math>-40 {db \over dek}</math> meredekséggel halad, tehát kiszámíthatjuk, hogy az amplitúdó görbe <math>1 + {6 dB \over 40 {dB \over dek}} = 1+0.15 dek = 1 \cdot 10^{0.15}=1.412 \approx \sqrt{2}</math>-nél metszi az <math>\omega</math> tengelyt.
 
 
Előfordul még olyan eset is, amikor az amplitúdó görbe duplán törik az integrátor egyenesének tengelymetszete előtt, méghozzá úgy hogy például -20 dB/dek-ről vízszintes szakaszba megy át, majd újra -20 dB/dek-re törik le. Ilyenkor a vágási körfrekvencia annyi dekáddal nagyobb az integrátor egyenesének tengelymetszeti pontjánál, ahány dekád széles az amplitúdó görbe vízszintes szakasza.
 
 
Általánosan elmondható, hogy érdemes először lerajzolni a görbe menetét és logikázni az ismert pontok alapján. Geometriai úton legtöbb esetben kihozható egy ismert tengelymetszetből a vágási körfrekvencia, azonban figyelni kell hogy az Y tengely dB skálában van, míg az X tengely pedig dekád skálában.
 
Felhasználható azonosság még, hogy az integrátor egyenese (vagy annak meghosszabbítása) <math>\omega=1</math> körfrekvencián <math>20 \cdot log(K)</math> értéket vesz fel dB-ben.
 
=== 6. Amplitúdó-körfrekvencia görbe felrajzolása ===
 
Itt az eddigieket kell összegyúrni eggyé. Először felrajzolod az görbe vonalát a megfelelő meredekségekkel (ezeket rá is kell írni) és törésekkel. Ezután behúzod az <math>\omega</math> tengelyt úgy, hogy már tudjuk a kiszámolt értékből, hogy az amplitúdó görbe melyik szakaszára (melyik két töréspont közé) esik a vágási körfrekvencia - Jelen esetben ez az 1 és az 10 közötti szakasz. Ezután jelölöd az <math>\omega</math> tengelyen a töréspontok értékeit és a vágási körfrekvencia értékét. Végül behúzod <math>|L(j\omega)|</math> tengelyt.
 
[[File:Bode-diagram_amplitudo.jpg]]
 
=== 7. Fázis-körfrekvencia görbe ===
 
Ezt a legegyszerűbb úgy megszerkeszteni, hogy az Y tengelyt felosztjuk 90°-onként. A fenti fel/letöréseknek megfelelően megy át a fázisgörbe egyik sávról a másikra. Ha feltörik, akkor az érték 90°-al nő, ha letörik, akkor 90°-al csökken. Értelemszerűen, ha többszörös multiplicitású pólus/zérus okozza a törést, akkor annyiszor 90°-al változik a fázisgörbe menete, ahányszoros multiplicitású a törést kiváltó pólus/zérus.
 
Ez viszont nem egyik pillanatról a másikba megy végbe, hanem "átmenetszerűen", rajzban ez azt jelenti, hogy a törésponti körfrekvencián már PONTOSAN félúton van az új állapot felé.
 
[[File:Bode-diagram fazis.jpg]]
 
=== 8. Fázisgörbe kezdőértéke ===
 
Ez a rendszer típusszámán (i) és a körerősítésén (K) múlik:
 
# Ha a K körerősítés pozitív, akkor a kezdőérték 0°, ha negatív, akkor -180°
# A fent kikalkulált kezdőértéket az integrátorok (-i*90°)-al változtatják meg:
#* Ha nincs integrátor (i=0), akkor pozitív K esetén 0°, negatív K esetén -180°
#* Ha egy integrátor van (i=1), akkor pozitív K esetén -90°, negatív K esetén -270°
#* Ha két integrátor van (i=2), akkor pozitív K esetén -180°, negatív K esetén -360° = 0°
#* Ha a nevezőben nincs integrátor, de van 0 értékű zérus (i= -1), akkor pozitív K esetén +90°, negatív K esetén -90°
 
=== 9. Fázistartalék(többlet) meghatározása ===
 
A fázistartalék <math>\varphi_t</math> értéke megadja, hogy a fázisgörbe a vágási körfrekvencián mennyivel van -180° felett. Azaz ahol az amplitúdó görbe metszi az <math>\omega</math> tengelyt, ott megnézed a <math>\varphi (\omega)</math> görbe értéke mennyivel van -180° felett.
 
Ennek a közelítő leolvasásához célszerű egy jó aszimptotikus amplitúdó görbét rajzolni és alá egy fázisgörbét, bár erről csak az látszik általában hogy a fázistartalék pozitív, avagy negatív. Jelen esetben sajnos még ezt is nehézkes eldönteni...
 
Szerencsére a fázisgörbe függvénye egzaktul megadható az átviteli függvényből, az alábbi általános képlet alapján - ha K negatív, akkor még 180°-ot le kell vonni belőle:
 
<math>\varphi(\omega) = -i \cdot 90^{\circ} + \sum_{k} arctg \left( {1\over |z_k|} \cdot \omega \right) - \sum_{l} arctg \left( {1\over |p_l|} \cdot \omega \right)</math>
 
 
A mi esetünkben:
 
<math>\varphi(\omega) = -1 \cdot 90^{\circ} + arctg \left( {1\over |-10|} \cdot \omega \right) - arctg \left( {1\over |-1|} \cdot \omega \right) - arctg \left( {1\over |-50|} \cdot \omega \right)=</math>
 
 
<math>
=-90^{\circ} +arctg \left( 0.1 \cdot \omega \right) - arctg \left(  \omega \right) - arctg \left( 0.02 \cdot \omega \right)
</math>
 
 
Tehát a fázistartalék:
 
<math>
\varphi_t=\varphi(\omega_c)+180^{\circ}=180^{\circ}-90^{\circ} +arctg \left( 0.1 \cdot \omega_c \right) - arctg \left(  \omega_c \right) - arctg \left( 0.02 \cdot \omega_c \right) \approx
</math>
 
<math>
\approx 90^{\circ} +arctg \left( 0.1 \cdot \sqrt{2} \right) - arctg \left(  \sqrt{2} \right) - arctg \left( 0.02 \cdot \sqrt{2} \right) =
</math>
 
<math>
= 90^{\circ} +arctg \left( 0.1414 \right) - arctg \left(  1.414 \right) - arctg \left( 0.02828 \right)
</math>
 
 
Felhasználva az alábbi közelítéseket:
 
<math>arctg(1)=45^{\circ}, arctg(0.1) \approx 5^{\circ}, arctg(10) \approx 85^{\circ}</math>
 
 
<math>\varphi_t \approx 90^{\circ} + 5^{\circ} -  55^{\circ} - 0^{\circ} = 40^{\circ} </math>
 
=== 10. Fázis-körfrekvencia görbe felrajzolása ===
 
Az itt lévő rajz kicsit csalóka, de a görbe menete jól látszik. A fázistartalék viszont +40°!
 
[[File:Bode-diagram fazis teljes.jpg]]
 
=== 11. A rendszer stabilitásvizsgálata ===
 
Stabilis-e a rendszer: Vagy azt nézed, hogy a fázistöbblet pozitív-e, vagy azt, hogy a jobboldali számsíkon van-e pólus - Ha nincs, akkor stabilis.
 
=== 12. Statikus hiba ===
 
Megnézed az integrátorok számát, az adja a típusszámot, és azt a sort írod le a táblázatból ''(Lásd: könyv 140. oldal)''.
 
{| class="wikitable"  style="text-align:center"
|  '''Típusszám'''  ||  0  ||  1  ||  2   
|-
|-
egységugrás ||  <math>\frac{1}{1+K}</math>  ||  0  ||  0   
'''Egységugrás''' ||  <math>\frac{1}{1+K}</math>  ||  0  ||  0   
|-
|-
sebességugrás ||  <math>\infty</math>  ||  <math>\frac{1}{K}</math>  ||  0   
'''Sebességugrás''' ||  <math>\infty</math>  ||  <math>\frac{1}{K}</math>  ||  0   
|-
|-
gyorsulásugrás ||  <math>\infty</math>  ||  <math>\infty</math>  ||  <math>\frac{1}{K}</math>   
'''Gyorsulásugrás''' ||  <math>\infty</math>  ||  <math>\infty</math>  ||  <math>\frac{1}{K}</math>   
|}
|}


29. sor: 200. sor:




<!--==Egy másik jó leírás: [https://wiki.sch.bme.hu/bin/view/Infoalap/SzabTechNyquistBode Nyquist, Bode]==-->
[[Kategória:Villamosmérnök]]
 
[[Kategória:Mérnök informatikus]]
 
[[Kategória:Infoalap]]
[[Kategória:Villanyalap]]

A lap jelenlegi, 2017. december 29., 16:09-kori változata

A Bode-diagram kézi rajzolása több tantárgyból is előjöhet. Ehhez nyújt segítséget az alábbi leírás, melyet Ndroo készített a Keviczky-féle Szabályozástechnika-könyv alapján.

A Bode-diagram készítésének lépései

1. Átviteli függvény átalakítása

Az aszimptotikus Bode-diagramm rajzolásához először "Bode normál alakra" kell hoznunk az átviteli függvényt:


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L(s) = {K \over s^i} \cdot {\prod_{k} \left( {1 + sT_k} \right) \cdot \prod_{m} \left( 1 + s \cdot 2 \xi_m T_m + s^2 T_m^2 \right) \over \prod_{l} \left( {1 + sT_l} \right) \cdot \prod_{n} \left( 1 + s \cdot 2 \xi_n T_n + s^2 T_n^2 \right)} }


Ebből az alakból leolvasható a rendszer Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K} körerősítése és Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i} típusszáma (integrátorok száma).


Ha tehát a feladatban ehhez hasonló alak van: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L(s)=\frac{10 \cdot (s+10)}{s^3+51s^2+50s}} , akkor át kell alakítani ilyen alakká: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L(s)={2\over s}\cdot \frac{(1+0.1s)}{(1+s)(1+0.02s)}}


Először a számlálót és a nevezőt is szorzattá kell alakítani, aztán annyit emelünk ki, hogy az "s" nélküli tagok értéke 1 legyen:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle L(s)=\frac{10 \cdot (s+10)}{s^3+51s^2+50s}=10\frac{s+10}{s(s+1)(s+50)}=10\frac{10}{50}\frac{1+0.1s}{s(1+s)(1+0.02s)}={2 \over s} \cdot \frac{(1+0.1s)}{(1+s)(1+0.02s)}} .


Így minden tényező Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1+sT} alakú lesz. Ha eleve így adták meg, akkor ezt a lépést ki kell hagyni.

Megjegyzés: Ha komplex konjugált gyökpárok is kijöttek volna a gyöktényezős felbontás során, akkor azok Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 + s \cdot 2 \xi T + s^2 T^2} alakú tagokat hoztak volna be.

2. Pólusok/zérusok felírása

Zérusok - Azok a helyek ahol a számláló értéke 0 lesz: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z_1=-10}

Pólusok - Azok a helyek, ahol a nevező értéke lesz 0: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p_1=0, \;p_2=-1, \;p_3=-50}

3. Fel/letörések meghatározása

Ezek után készítsük el az alábbi táblázatot, melynek első sorában a pólusok és a zérusok abszolút értékük szerinti növekvő sorrendbe vannak rendezve (ezek lesznek a töréspontok):

Pólusok/zérusok
abszolút értéke
Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |p_1|=0} Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |p_2|=1} Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |z_1|=10} Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |p_3|=50}
Index +1 +1 -1 +1
Multiplicitás 1 1 1 1

Az index értéke zérus esetén -1, pólus esetén +1.

A multiplicitás pedig azt jelenti, hogy „hányszoros gyök”. Azaz például ha a -1 háromszoros gyöke lenne a nevezőnek, akkor a multiplicitása 3 lenne. Továbbá a komplex konjugált pólus/zérus-párok esetén mindkét gyök abszolút értéke ugyanaz, így azok alapból 2-szeres multiplicitásúnak számítanak.


A jelleggörbe meredeksége a következő képlet szerint alakul:


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left( -20 {dB \over dek} \right) \cdot (multiplicitas) \cdot (index) }


Ez a meredekség érték mindig az előző meredekséghez hozzáadódik!

4. A görbe kezdő meredeksége

Ha a rendszer tartalmaz integrátort (i>0), akkor a fenti képlet a kezdő meredekséget is tökéletesen megadja. Azaz 1 integrátornál a kezdő meredekség -20 dB/dek, 2 integrátornál -40 dB/dek...

Ha azonban nincs integrátor a rendszerben (i=0), akkor az amplitúdó görbe kezdő meredeksége zérus, azaz egy vízszintes szakasszal indul.

A fenti példában egyszeres integrátor van, azaz -20dB/dekád a kezdő meredekség.

(Ha esetleg olyan állna elő, hogy i<0, azaz a nincs 0 értékű pólus, de van legalább egy 0 értékű zérus, akkor a kezdő meredekség szintén a képlet szerint alakul. Azaz +20 dB/dek, +40 dB/dek.... )

5. Az omega tengely metszésének pontja

Most már tudjuk, hogyan néz ki az aszimptotikus amplitúdó görbe menete, de még szükségünk van az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengely metszéspontjára, azaz Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega_c} vágási körfrekvencia értékére.

Ez legtöbb esetben a kezdeti meredekség és a körerősítés alapján meghatározható. Ha nincs integrátor a rendszerben (i=0), akkor a kezdeti szakasz vízszintes, így ez a módszer sajnos nem használható. Ha azonban i>0, akkor tudjuk, hogy az integrátor egyenese (van annak meghosszabbítása) Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sqrt[i]{K}} körfrekvencián metszi az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengelyt. Ha ez előtt a pont előtt nincs töréspont, akkor a tényleges amplitúdógörbe is itt fogja metszeni az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengelyt.


Jelen esetünkben azonban 1 integrátor van, tehát az integrátor egyenese (vagy annak meghosszabbítása) K=2-nél metszi a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengelyt. Mivel azonban Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega=1} -nél az integrátor egyenesének kezdeti -20 dB/dek meredekségéhez -20 dB/dek hozzáadódik a képletnek megfelelően, tehát még Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega=2} előtt -40 dB/dek lesz a meredeksége, így a tényleges amplitúdó görbe nem 2-nél, hanem egy annál kisebb értéknél metszi az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengelyt!

Az integrátor egyenese Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega=1} körfrekvencián Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle log\left( { 2\over 1 } \right) dek \cdot 20 {db \over dek} = 6 dB} értéket vesz fel, hiszen Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle log\left( { 2\over 1 } \right)} dekád távolság van az 1 és 2 körfrekvencia értékek között, és Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -20 {db \over dek}} az integrátor egyenesének meredeksége. Tudjuk, hogy a tényleges amplitúdó görbe Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega=1} körfrekvenciától Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -40 {db \over dek}} meredekséggel halad, tehát kiszámíthatjuk, hogy az amplitúdó görbe Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 + {6 dB \over 40 {dB \over dek}} = 1+0.15 dek = 1 \cdot 10^{0.15}=1.412 \approx \sqrt{2}} -nél metszi az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengelyt.


Előfordul még olyan eset is, amikor az amplitúdó görbe duplán törik az integrátor egyenesének tengelymetszete előtt, méghozzá úgy hogy például -20 dB/dek-ről vízszintes szakaszba megy át, majd újra -20 dB/dek-re törik le. Ilyenkor a vágási körfrekvencia annyi dekáddal nagyobb az integrátor egyenesének tengelymetszeti pontjánál, ahány dekád széles az amplitúdó görbe vízszintes szakasza.


Általánosan elmondható, hogy érdemes először lerajzolni a görbe menetét és logikázni az ismert pontok alapján. Geometriai úton legtöbb esetben kihozható egy ismert tengelymetszetből a vágási körfrekvencia, azonban figyelni kell hogy az Y tengely dB skálában van, míg az X tengely pedig dekád skálában.

Felhasználható azonosság még, hogy az integrátor egyenese (vagy annak meghosszabbítása) Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega=1} körfrekvencián Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 20 \cdot log(K)} értéket vesz fel dB-ben.

6. Amplitúdó-körfrekvencia görbe felrajzolása

Itt az eddigieket kell összegyúrni eggyé. Először felrajzolod az görbe vonalát a megfelelő meredekségekkel (ezeket rá is kell írni) és törésekkel. Ezután behúzod az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengelyt úgy, hogy már tudjuk a kiszámolt értékből, hogy az amplitúdó görbe melyik szakaszára (melyik két töréspont közé) esik a vágási körfrekvencia - Jelen esetben ez az 1 és az 10 közötti szakasz. Ezután jelölöd az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengelyen a töréspontok értékeit és a vágási körfrekvencia értékét. Végül behúzod Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |L(j\omega)|} tengelyt.

Bode-diagram amplitudo.jpg

7. Fázis-körfrekvencia görbe

Ezt a legegyszerűbb úgy megszerkeszteni, hogy az Y tengelyt felosztjuk 90°-onként. A fenti fel/letöréseknek megfelelően megy át a fázisgörbe egyik sávról a másikra. Ha feltörik, akkor az érték 90°-al nő, ha letörik, akkor 90°-al csökken. Értelemszerűen, ha többszörös multiplicitású pólus/zérus okozza a törést, akkor annyiszor 90°-al változik a fázisgörbe menete, ahányszoros multiplicitású a törést kiváltó pólus/zérus.

Ez viszont nem egyik pillanatról a másikba megy végbe, hanem "átmenetszerűen", rajzban ez azt jelenti, hogy a törésponti körfrekvencián már PONTOSAN félúton van az új állapot felé.

Bode-diagram fazis.jpg

8. Fázisgörbe kezdőértéke

Ez a rendszer típusszámán (i) és a körerősítésén (K) múlik:

  1. Ha a K körerősítés pozitív, akkor a kezdőérték 0°, ha negatív, akkor -180°
  2. A fent kikalkulált kezdőértéket az integrátorok (-i*90°)-al változtatják meg:
    • Ha nincs integrátor (i=0), akkor pozitív K esetén 0°, negatív K esetén -180°
    • Ha egy integrátor van (i=1), akkor pozitív K esetén -90°, negatív K esetén -270°
    • Ha két integrátor van (i=2), akkor pozitív K esetén -180°, negatív K esetén -360° = 0°
    • Ha a nevezőben nincs integrátor, de van 0 értékű zérus (i= -1), akkor pozitív K esetén +90°, negatív K esetén -90°

9. Fázistartalék(többlet) meghatározása

A fázistartalék Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_t} értéke megadja, hogy a fázisgörbe a vágási körfrekvencián mennyivel van -180° felett. Azaz ahol az amplitúdó görbe metszi az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega} tengelyt, ott megnézed a Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi (\omega)} görbe értéke mennyivel van -180° felett.

Ennek a közelítő leolvasásához célszerű egy jó aszimptotikus amplitúdó görbét rajzolni és alá egy fázisgörbét, bár erről csak az látszik általában hogy a fázistartalék pozitív, avagy negatív. Jelen esetben sajnos még ezt is nehézkes eldönteni...

Szerencsére a fázisgörbe függvénye egzaktul megadható az átviteli függvényből, az alábbi általános képlet alapján - ha K negatív, akkor még 180°-ot le kell vonni belőle:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi(\omega) = -i \cdot 90^{\circ} + \sum_{k} arctg \left( {1\over |z_k|} \cdot \omega \right) - \sum_{l} arctg \left( {1\over |p_l|} \cdot \omega \right)}


A mi esetünkben:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi(\omega) = -1 \cdot 90^{\circ} + arctg \left( {1\over |-10|} \cdot \omega \right) - arctg \left( {1\over |-1|} \cdot \omega \right) - arctg \left( {1\over |-50|} \cdot \omega \right)=}


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle =-90^{\circ} +arctg \left( 0.1 \cdot \omega \right) - arctg \left( \omega \right) - arctg \left( 0.02 \cdot \omega \right) }


Tehát a fázistartalék:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_t=\varphi(\omega_c)+180^{\circ}=180^{\circ}-90^{\circ} +arctg \left( 0.1 \cdot \omega_c \right) - arctg \left( \omega_c \right) - arctg \left( 0.02 \cdot \omega_c \right) \approx }

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \approx 90^{\circ} +arctg \left( 0.1 \cdot \sqrt{2} \right) - arctg \left( \sqrt{2} \right) - arctg \left( 0.02 \cdot \sqrt{2} \right) = }

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle = 90^{\circ} +arctg \left( 0.1414 \right) - arctg \left( 1.414 \right) - arctg \left( 0.02828 \right) }


Felhasználva az alábbi közelítéseket:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle arctg(1)=45^{\circ}, arctg(0.1) \approx 5^{\circ}, arctg(10) \approx 85^{\circ}}


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi_t \approx 90^{\circ} + 5^{\circ} - 55^{\circ} - 0^{\circ} = 40^{\circ} }

10. Fázis-körfrekvencia görbe felrajzolása

Az itt lévő rajz kicsit csalóka, de a görbe menete jól látszik. A fázistartalék viszont +40°!

Bode-diagram fazis teljes.jpg

11. A rendszer stabilitásvizsgálata

Stabilis-e a rendszer: Vagy azt nézed, hogy a fázistöbblet pozitív-e, vagy azt, hogy a jobboldali számsíkon van-e pólus - Ha nincs, akkor stabilis.

12. Statikus hiba

Megnézed az integrátorok számát, az adja a típusszámot, és azt a sort írod le a táblázatból (Lásd: könyv 140. oldal).

Típusszám 0 1 2
Egységugrás Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{1+K}} 0 0
Sebességugrás Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \infty} 0
Gyorsulásugrás
  • 0 jelentése: hiba nélkül követi
  • jelentése: nem tudja követni