|
|
(5 közbenső módosítás, amit 2 másik szerkesztő végzett, nincs mutatva) |
1. sor: |
1. sor: |
| Az [[Analízis I. (MSc) | Analízis I. (MSc)]] tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni. | | Az [[Analízis (MSc)]] tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni. |
|
| |
|
| = Integrál trafók témakör = | | = Integrál trafók témakör = |
129. sor: |
129. sor: |
| * Amiből: | | * Amiből: |
| <math>lim_{s \to \infty}(f''(0+)) = f''(0+) = 0</math> | | <math>lim_{s \to \infty}(f''(0+)) = f''(0+) = 0</math> |
| | }} |
| | |
| | |
| | <big>2)</big> <small>[2016V2]</small> Számítsuk ki az alábbi integrált: <math>\int_0^\infty \frac{\cos t-e^{-t}}{t} dt</math> |
| | |
| | {{Rejtett |
| | |mutatott=Megoldás: |
| | |szöveg= |
| | |
| | Laplace tulajdonságok miatt <math>\int_0^\infty \frac{f(t)}{t} dt = \int_0^\infty \mathcal{L}(f)(s) ds</math>. |
| | |
| | Jelen esetben <math>f(t) = \cos t - e^{-t}</math>, számoljuk ki az integrált: |
| | |
| | <math>\int_0^\infty \mathcal{L}(f) ds = \int_0^\infty \frac{s}{s^2+1} - \frac{1}{s+1} ds = \int_0^\infty \frac12 \frac{2s}{s^2+1} - \frac{1}{s+1} = </math> |
| | |
| | <math>\left[ \frac12 \ln|s^2+1| - \ln |s+1| \right]_0^\infty = \left[ \ln \sqrt{|s^2+1|} - \ln |s+1| \right]_0^\infty = \left[ \ln \frac{\sqrt{|s^2+1|}}{|s+1} \right]_0^\infty = \ln 1 - \ln 1 = 0</math> |
| }} | | }} |
|
| |
|
184. sor: |
200. sor: |
| <math> \hat{u}(s, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, y) e^{-ixs} dx </math> | | <math> \hat{u}(s, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, y) e^{-ixs} dx </math> |
|
| |
|
| Az egyenlet x szerinti Fourier trafója tehát:
| | Vegyük az egyenlet x szerinti Fourier trafóját (a deriválás x-ben <math>i \cdot s</math>-el szorzás): |
|
| |
|
| <math> -s^2 \hat{u}(s,y) + \frac{\partial^2}{\partial y^2}\hat{u}(s, y) = 0</math> | | <math> -s^2 \hat{u}(s,y) + \frac{\partial^2}{\partial y^2}\hat{u}(s, y) = 0</math> |
226. sor: |
242. sor: |
|
| |
|
| <math> u(x, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} 1 \cdot \sqrt{\frac{2}{\pi}}\frac{y}{\xi^2 + y^2} d\xi</math> | | <math> u(x, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} 1 \cdot \sqrt{\frac{2}{\pi}}\frac{y}{\xi^2 + y^2} d\xi</math> |
| | |
| | <math> u(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi^2 + y^2} d\xi</math> |
| | |
| | <math> u(x, y) = \frac{1}{y \pi} \int_{-\infty}^{\infty} \frac{1}{(\frac{\xi}{y})^2 + 1} d\xi</math> |
| | |
| | Vezessük be a <math>z = \frac{\xi}{y},~d\xi = y dz</math> változót: |
| | |
| | <math> u(x, y) = \frac{1}{y \pi} \int_{-\infty}^{\infty} \frac{1}{z^2 + 1} ydz</math> |
| | |
| | <math> u(x, y) = \frac{y}{y \pi} \left[arctg z \right]_{-\infty}^{\infty}</math> |
| | |
| | <math> u(x, y) = \frac{1}{\pi} \left( \frac{\pi}{2} - (-\frac{\pi}{2}) \right) = \frac{\pi}{\pi} = 1</math> |
| }} | | }} |
|
| |
|
705. sor: |
733. sor: |
| <math>|g'(x)| = \left|(\sqrt{1 + coshx} - 2)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}}\right|</math> | | <math>|g'(x)| = \left|(\sqrt{1 + coshx} - 2)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}}\right|</math> |
|
| |
|
| <math>min_I|g'(x)| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}}\right| = \frac{e^4 - e^{-4}}{2 \sqrt(1 + e^5 + e^{-5})} \approx \frac{e^{1.5}}{2} \geq 1</math> | | <math>min_I|g'(x)| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}}\right| = \frac{e^4 - e^{-4}}{2 \sqrt{1 + e^5 + e^{-5}}} \approx \frac{e^{1.5}}{2} \geq 1</math> |
|
| |
|
| Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens. | | Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens. |
Az Analízis (MSc) tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni.
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Megoldás:
- Vegyük mindkét egyenlet Laplace trafóját ():
- Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
- Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
- Az inverz laplacehoz bontsuk parciális törtekre:
- Együtthatókat összehasonlítva:
- Vagyis
- Tehát a táblázat alapján
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Megoldás:
- Vegyük mindkét egyenlet Laplace trafóját:
- Átrendezve és mátrixos alakra hozva:
- Inverz Laplace után:
3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
2) [2016V2] Számítsuk ki az alábbi integrált:
Megoldás:
Laplace tulajdonságok miatt .
Jelen esetben , számoljuk ki az integrált:
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
Megoldás:
- Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: )!:
- Aminek a disztribúció értelemben vett megoldás Y-ra:
- Ha , akkor leoszthatunk vele.
- Ha , akkor , vagyis bármilyen konstans lehet, ezt jelöljük pl c-vel.
- Az összeg jobboldali tagja egyszerűsíthető, ha kihasználjuk, hogy az egy disztribúció (a a nevezőben lévő s-be is nullát helyettesít):
- Aminek vegyük az inverz Fourier transzformáltját:
- Megjegyzés: A táblázatban szerepel , de nekünk inverz trafó kell
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
3) [2016V1] Fourier transzformáció segítségével határozzuk meg u(x, t)-t, ha
Megoldás:
Egy u(x, y) függvény x szerinti Fourier trafójának a definíciója:
Vegyük az egyenlet x szerinti Fourier trafóját (a deriválás x-ben -el szorzás):
Oldjuk meg a diff-egyenletet y-ra (az y szerinti deriváltat jelölje a vessző):
Tudjuk, hogy ez a kifejezés -ben nullához tart, mert egy Fourier trafó:
Ami, tekintve, hogy , csak akkor teljesülhet, ha .
Tehát:
A kezdeti feltétel Fourier trafója:
A két egyenletet összevetve:
Vagyis:
-hoz vegyük ennek az x szerinti inverz Fourier trafóját:
Vezessük be a változót:
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Megoldás:
Vezessük be a jelölést!
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
Megoldás:
- Ha , akkor leoszthatunk vele, és azt kapjuk, hogy .
- Ha , akkor , vagyis bármilyen konstans értéket felvehet, ezt jelöljük pl c-vel.
- Tehát ha , akkor , ha , akkor tetszőleges értékű, ez röviden:
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
Megoldás:
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
Zoli megoldása:
Wavelet trafók
Megjegyzés: a kitevőbe írt törtek (pl: ) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni.
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy
Megoldás:
a) A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül:
A táblázatban nincs benne, de közismert, hogy
A táblázatból kiolvasott képletbe behelyettesítve:
b)
Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet:
Használjuk ki, hogy korábban már kiszámoltuk, hogy
Amit kétszer parciálisan integrálva meg is kapjuk az eredményt:
2) [2016ZH1] A Poisson wavelet a következő:
a) Mutassuk meg, hogy , ha
b) Mutassuk meg, hogy
c)
Megoldás:
a)
b)
c)
Először számoljuk ki a wavelet Fourier trafóját (felhasználom, hogy ):
3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!
Megoldás:
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Megoldás:
- Az -t keressük szorzat alakban:
- A diffegyenlet így átírva:
- Ez így már szeparálható:
- Figyeljünk arra, hogy a deriváltak a számlálóban legyenek
- A szeparálás utáni hányadosokról pedig tudjuk, hogy negatívak (innen jön a )
- Nézzük meg, hogy melyik változóra van feltételünk, aminek a jobb oldalán konstans szerepel.
- Az első két féltétel átírva: , minden t-re, vagyis
- Tehát az X-re van a T-től nem függő feltételünk, ezért először az X-re oldjuk meg a diffegyenletet!
- Oldjuk meg a diff-egyenletet:
- Írjuk fel a karakterisztikus függvényt!
- Vagyis a diff-egyenlet megoldása:
- Vizsgáljuk meg a kezdeti feltételeket:
Ami csak olyan egész k értékekre teljesülhet, amikre:
- Most oldjuk meg a diff-egyenletet T(t)-re, de a b helyére az újonnan kapott képletet írjuk be.
- A T-re vonatkozó (k-tól függő) diff-egynelet:
- Az -re vonatkozó k-tól függő egyenlet tehát:
- Vezessük be az és konstansokat!
- Az pedig felírható az -k összegeként az összes k-ra.
- A maradék két feltétel segítségével számoljuk ki az és konstansok értékeit.
Amiből az együtthatók összehasonlításával megkapjuk, hogy , minden más , ha
- A másik feltételhez ki kell számolni az -t.
Innen pedig:
, minden más pedig nulla.
Vagyis a megoldás:
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Megoldás:
Először oldjuk meg x-re:
A -hoz tartozó megoldás nem érdekel minket, tehát .
Az X azonosan nulla megoldás megint nem érdekel minket, így:
Most oldjuk meg a T-re vonatkozó diff-egyenletet
Írjuk fel -t!
Majd pedig az ebből generált sort:
, minden más pedig nulla.
Vagyis:
.
Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
Megoldás:
- Írjuk fel a diffegyenletet véges differenciákkal:
Magyarázat:
- Írjuk fel a differál-egyenletet differa-egyenlet formában!
- Na most felejtsük, hogy delta nullához tart, és válasszunk ki egy megfelelően kicsi értéket vízszintes (h) és függőleges (k) irányban. A folytonos függvény helyett pedig használjuk egy ilyen lépésközönként mintavételezett diszkrét függvényt, ahol jeletése .
- Válasszuk meg a feladatban adott h értékhez a k értékét, hogy az egyenletből a lehető legtöbb tag kiessen (jelen esetben a választás célszerű).
- Fejezzük ki -et az egyenletből.
- Ennek a képletnek a rekurzív alkalmazásával el tudunk jutni a peremfeltételtől az u_{1,2} értékig.
- Innen az és a ismert a peremfeltétel alapján, de az -ért még számolnunk kell.
- Az -hez a nullában vett t szerinti deriváltra vonatkozó feltételt kell használni:
- A kért pont tehát kiszámolható az alábbi peremen található értékekből (papíron egyszerűbb felvenni egy négyzetrácsot az értékeknek, és mindenhova odaírni az adott értéket):
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Megoldás:
Az egyszerű számolás miatt legyen
Ez alapján a keresett érték:
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
Megoldás:
- Először meg kell határozni B sajátértékeit. Ezt a egyenlet megoldásaiként kapjuk meg. Most az -os szorzó miatt inkább számoljuk azzal, hogy
- Fejtsük ki a determinánst az első oszlop szerint:
- Most határozzunk meg minden sajátértékhez egy sajátvektort (itt az -os szorzó nem számít, a sajátvektor csak konstans szorzó erejéig egyértelmű)
- Először a -hoz keresünk két sajátvektort:
- Mindhárom egyenletünk megegyezünk, az y legyen mondjuk 1, ekkor a z-nek -2-nek kell lennie, az x tetszőleges. Az x=0 és az x=1 két lineáris független sajátvektort ad.
- Határozzuk meg a -höz tartozó sajátvektort is:
- Tehát egy sajátvektor például:
- A Jordan-normál forma (sajátértékek főátalóban, itt már számít a skalár szorzó) és a transzformációs mátrix (sajátvektorok alkotta mátrix):
- A végeredményt az alábbi alakban kapjuk majd meg: . Ehhez viszont először invertálni kell T-t.
- Számoljuk ki -t!
- A végeredmény tehát (a mátrix szorzásokat már nem kell elvégezni):
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
Megoldás:
a) A húrmódszer konvergens ha a tartomány összes pontján.
Ez megadja, hogy max mekkora lehet az intervallum hossza, hogy az algoritmus konvergáljon. Gyakorlatban azt szoktuk vizsgálni, hogy a számláló maximuma és a nevező minimuma esetén is teljesül-e a feltétel, ami egy szűkebb feltétel, de becslésnek jó.
Számoljuk ki a deriváltakat!
Nézzük meg ezeknek a minimumát és maximumát (csak a tartomány szélei érdekesek, nincs lokális minimuma, tehát az x helyére mindenhova négyet vagy ötöt írunk)
b) Az iteráció konvergens ha a tartomány összes pontján.
Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens.
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
Megoldás:
- Iteráció: , az [1, 2] intervallum összes pontján. Ebből következik, hogy az iteráció bármely részintervallumon divergens lesz, tehát nem használható.
Vagyis az algoritmus konvergens, ha
3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Megoldás:
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága:
A iteráció esetében a pontosság -el szorzódik meg minden iteráció után. Ha ez kisebb, mint , akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés.
Az [1,2] tartományon ennek a maximuma
ami nagyobb, mint 1, ezért itt az iteráció még csak nem is konvergens. A [2, 3] tartományon a maximum
, tehát itt az iteráció gyorsabban konvergál.
4) [2016V1] Newton (érintő) módszerrel keressük a egyenlet megoldását. Adjuk meg -et és segítségével!
Legyen . Adjuk meg -t úgy, hogy a módszer konvergáljon!
Mi a konvergencia sebessége?
Megoldás:
A konvergencia feltétele: a tartomány összes pontján, illetve ezt közelíthetjük a számláló maximumával és nevező minimumával:
A konvergencia sebessége:
, vagy egyszerűbb alakban:
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
Megoldás:
- Vezessük be az alábbi függvényt:
- A szélsőérték akkor létezhet, ha az összes változó szerinti derviált nulla:
Az első egyenlet 2x szeresét a második egyenlet y szorosával egyenlővé téve:
Azaz vagy
- eset: (ellentmondás: x, y, z pozitív a feladat szerint)
- eset:
Az második egyenlet 3y szeresét a harmadik egyenlet 2z szeresét egyenlővé téve:
Vagyis (ismerve, hogy ):
A definitséghez szükség van ebben a pontban a feltétel gradiensére:
Illetve a gradiensre merőleges vektorok alakjára (skalárszorzat alapján: )
Ezen kívül még az F Hesse mátrixa is kelle fog ebben a pontban:
A definitséghez szorozzuk meg a Hesse mátrixot a gradiensre merőleges vektorokkal mindkét oldalról:
Ennek az előjele lehet pozitív és negatív is x és y értékétől függően, vagyis a mátrix indefinit, azaz itt nincs szélsőérték.
(Ha mindig pozitív lett volna, az minimum helyet jelölt volna, ha mindig negatív akkor maximum, ha mindig nulla, akkor pedig nyereg pont.)
2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
Megoldás:
A harmadik egyenletből:
Azaz vagy
- eset: ,
- eset:
Az első egyenletből:
Az második egyenletből egyenletből:
(x = 0: ellentmondás)
A negyedik egyenlet alapján:
Vagyis a megoldások (4 db):
3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Megoldás:
Vonjuk ki a második egyenletből a harmadikat:
Azaz vagy
A második és harmadik egyenlet is azt adja, hogy:
Az első egyenlet alapján:
Tehát a két megoldás (a negyedik egyenlet alapján):
- eset
A második egyenletből:
Az első egyenletbe írva:
Azaz , ellentmondás.
A szélsőértékek jellege:
Az adott pontokban:
Az erre merőleges vektorok:
A Hesse mátrix:
A definitség:
Ez indefinit, itt nincs szélsőérték.
Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
Megoldás:
Ez a feladattípus arról szól, hogy használjuk az Euler-Lagrange (EL) egyenletet:
- Vegyük észre, hogy két különböző deriváltjel szerepel a képletben, és ezek mást jelentenek.
- A azt jelenti, hogy csak az -et közvetlenül tartalmazó tagokat deriváljuk, de az -től függő függvényt már konstansnak (független változónak) tekintjük a deriválás szempontjából.
- A esetében mindent deriválunk szerint, ami függ -től.
Az f függvény, amire alkalmazni kell az EL-t, az az integrál belseje: . Ha lenne feltétel is, akkor ugyanúgy be kéne vezetni egy függvényt, és arra kéne megoldani az EL-t.
A kezdeti felételeket felhasználva:
Tehát , azaz a megoldás:
.
2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
Megoldás:
Vezessünk be egy változót, és erre oldjuk meg a differenciálegyenletet (ha az egyenletből az x hiányozna, akkor y szerinti deriválásra kéne áttérni).
Írjuk vissza az y'-t p helyére
Ez egy sokkal nehezebb integrál, mint ami ZH-kon elő szokott fordulni.
Amúgy elvileg megoldható és helyettesítéssel meg néhány trigonometrikus összefüggés felhasználásával, és ez lesz a eredménye:
A két kezdeti feltételt felhasználva ki lehet számolni a két konstans értékét (). De analitikusan ez még a Mathematica-nak sem sikerült. Persze lehet próbálkozni numerikus módszerekkel :p
Valami nagyon el van b*va ezzel a feladattal.
https://s-media-cache-ak0.pinimg.com/236x/55/08/4b/55084be16a6b92e2cdb97951f371f4df.jpg
3) [2016V1] Keressük meg az extremális függvényt az operátorra vonatkozóan a feltétel mellett!
Megoldás:
Erre alkalmazzuk az Euler-Lagrange egyenletet:
Használjuk fel a kezdeti feltételeket!
A -hoz ki kell számolni J(y)-t.
Visszaírva y-ba: