„Analízis (MSc) típusfeladatok” változatai közötti eltérés
(41 közbenső módosítás, amit 2 másik szerkesztő végzett, nincs mutatva) | |||
1. sor: | 1. sor: | ||
Az [[Analízis (MSc)]] tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni. | |||
= Integrál trafók témakör = | = Integrál trafók témakör = | ||
91. sor: | 93. sor: | ||
* Számítsuk ki a tagok Laplace trafóját (x szerint): | * Számítsuk ki a tagok Laplace trafóját (x szerint): | ||
** <math>\mathcal{L}_x(y'') = s^2 Y - s y(0) - y'(0)</math> | ** <math>\mathcal{L}_x(y'') = s^2 Y - s y(0) - y'(0)</math> | ||
** <math>\mathcal{L}_x(xy') = -(\mathcal{L}_x(y'))' = -( | ** <math>\mathcal{L}_x(xy') = \mathcal{L}_x(xf(x)) = -(\mathcal{L}_x(f(x)))' = -(\mathcal{L}_x(y'))' = -(s Y(s) - y(0))' = -(s' Y(s) + s Y'(s)) = -Y - sY' </math> | ||
** <math>\mathcal{L}_x(x) = \frac{1}{s^2}</math> | ** <math>\mathcal{L}_x(x) = \frac{1}{s^2}</math> | ||
* Tehát az egyenlet Laplace transzformáltja (elsőrendű Y-ban): | * Tehát az egyenlet Laplace transzformáltja (elsőrendű Y-ban): | ||
107. sor: | 109. sor: | ||
|szöveg= | |szöveg= | ||
* Számoljuk ki <math>\mathcal{L}'(f)</math>-et! | * Számoljuk ki <math>\mathcal{L}'(f)</math>-et! | ||
<math>\mathcal{L}'(f) = s\mathcal{L}(f) | <math>\mathcal{L}'(f) = s\mathcal{L}(f) - \lim_{x \to 0+}f(x)</math> | ||
* Vegyük ennek az egyenletnek a végtelenben vett határértékét: | * Vegyük ennek az egyenletnek a végtelenben vett határértékét: | ||
** Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben: <math>lim_{s \to \infty}\mathcal{L}'(f)=0</math> | ** Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben: <math>lim_{s \to \infty}\mathcal{L}'(f)=0</math> | ||
** <math>lim_{s \to \infty}s\mathcal{L}(f) = lim_{s \to \infty}\frac{s(s^2-3s+1)}{5s^4-4s^3+8} = 0</math> | ** <math>lim_{s \to \infty}s\mathcal{L}(f) = lim_{s \to \infty}\frac{s(s^2-3s+1)}{5s^4-4s^3+8} = 0</math> | ||
* Tehát: | * Tehát: | ||
<math>0 = 0 | <math>0 = 0 - f(0+)</math> | ||
* Amiből: | * Amiből: | ||
<math>f(0+) = 0</math> | <math>f(0+) = 0</math> | ||
* Csináljuk meg ugyanezt <math>\mathcal{L}''(f)</math>-re! | * Csináljuk meg ugyanezt <math>\mathcal{L}''(f)</math>-re! | ||
<math>\mathcal{L}''(f) = s^2\mathcal{L}(f) | <math>\mathcal{L}''(f) = s^2\mathcal{L}(f) - sf(0+) - f'(0+)</math> | ||
* Vagyis: | * Vagyis: | ||
<math>0 = \frac{1}{5} | <math>0 = \frac{1}{5} - 0 - f'(0+)</math> | ||
* Amiből: | * Amiből: | ||
<math>f'(0+) = | <math>f'(0+) = \frac{1}{5}</math> | ||
* Végül csináljuk meg ugyanezt <math>\mathcal{L}'''(f)</math>-re! | * Végül csináljuk meg ugyanezt <math>\mathcal{L}'''(f)</math>-re! | ||
<math>\mathcal{L}'''(f) = s^3\mathcal{L}(f) | <math>\mathcal{L}'''(f) = s^3\mathcal{L}(f) - s^2f(0+) - sf'(0+) - f''(0+)</math> | ||
* Itt a határérték picit bonyolultabb: | * Itt a határérték picit bonyolultabb: | ||
<math>0 = lim_{s \to \infty}(\frac{s}{5} | <math>0 = lim_{s \to \infty}(\frac{s}{5} - 0 - \frac{s}{5} - f''(0+))</math> | ||
* Amiből: | * Amiből: | ||
<math>lim_{s \to \infty}(f''(0+)) = f''(0+) = 0</math> | <math>lim_{s \to \infty}(f''(0+)) = f''(0+) = 0</math> | ||
}} | |||
<big>2)</big> <small>[2016V2]</small> Számítsuk ki az alábbi integrált: <math>\int_0^\infty \frac{\cos t-e^{-t}}{t} dt</math> | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
Laplace tulajdonságok miatt <math>\int_0^\infty \frac{f(t)}{t} dt = \int_0^\infty \mathcal{L}(f)(s) ds</math>. | |||
Jelen esetben <math>f(t) = \cos t - e^{-t}</math>, számoljuk ki az integrált: | |||
<math>\int_0^\infty \mathcal{L}(f) ds = \int_0^\infty \frac{s}{s^2+1} - \frac{1}{s+1} ds = \int_0^\infty \frac12 \frac{2s}{s^2+1} - \frac{1}{s+1} = </math> | |||
<math>\left[ \frac12 \ln|s^2+1| - \ln |s+1| \right]_0^\infty = \left[ \ln \sqrt{|s^2+1|} - \ln |s+1| \right]_0^\infty = \left[ \ln \frac{\sqrt{|s^2+1|}}{|s+1} \right]_0^\infty = \ln 1 - \ln 1 = 0</math> | |||
}} | }} | ||
166. sor: | 184. sor: | ||
* Vagyis az egyenlet Fourier trafója (elsőrendű diff-egyenlet <math>\hat{y}</math>-ra): | * Vagyis az egyenlet Fourier trafója (elsőrendű diff-egyenlet <math>\hat{y}</math>-ra): | ||
<math>-s^2 \hat{y} + -\hat{y} - s\hat{y}' = \sqrt{2\pi}i\delta'(s)</math> | <math>-s^2 \hat{y} + -\hat{y} - s\hat{y}' = \sqrt{2\pi}i\delta'(s)</math> | ||
}} | |||
<big>3)</big> <small>[2016V1]</small> Fourier transzformáció segítségével határozzuk meg u(x, t)-t, ha | |||
<math>\frac{\partial^2 u}{\partial^2 x} + \frac{\partial^2 u}{\partial y^2} = 0</math> | |||
<math>u(x, 0) = 1,~x \in \mathcal{R},y \geq 0</math> | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
Egy u(x, y) függvény x szerinti Fourier trafójának a definíciója: | |||
<math> \hat{u}(s, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, y) e^{-ixs} dx </math> | |||
Vegyük az egyenlet x szerinti Fourier trafóját (a deriválás x-ben <math>i \cdot s</math>-el szorzás): | |||
<math> -s^2 \hat{u}(s,y) + \frac{\partial^2}{\partial y^2}\hat{u}(s, y) = 0</math> | |||
Oldjuk meg a diff-egyenletet y-ra (az y szerinti deriváltat jelölje a vessző): | |||
<math> \hat{u}_s''(y) - s^2 \hat{u}_s(y) = 0</math> | |||
<math> \lambda^2 = s^2 </math> | |||
<math> \hat{u}_s(y) = c_1(s) e^{|s|y} + c_2(s) e^{-|s|y}</math> | |||
Tudjuk, hogy ez a kifejezés <math>s \to \infty</math>-ben nullához tart, mert egy Fourier trafó: | |||
<math>lim_{s \to \infty}c_1(s) e^{|s|y} + c_2(s) e^{-|s|y} = 0</math> | |||
Ami, tekintve, hogy <math>y \geq 0</math>, csak akkor teljesülhet, ha <math>c_1(s) = 0</math>. | |||
Tehát: | |||
<math> \hat{u}_s(y) = c_2(s) e^{-|s|y}</math> | |||
A kezdeti feltétel Fourier trafója: | |||
<math> \hat{u}(0) = \sqrt{2 \pi} \delta (s)</math> | |||
A két egyenletet összevetve: | |||
<math>c_2(s) = \sqrt{2 \pi} \delta (s)</math> | |||
Vagyis: | |||
<math> \hat{u}(s, y) = \sqrt{2 \pi} \delta (s) e^{-|s|y}</math> | |||
<math>u(x, y)</math>-hoz vegyük ennek az x szerinti inverz Fourier trafóját: | |||
<math> \hat{u}(s, y) = \mathcal{F}(1) \cdot e^{-|s|y}</math> | |||
<math> u(x, y) = 1 * \mathcal{F}^{-1}(e^{-|s|y})</math> | |||
<math> \mathcal{F}^{-1}(e^{-|s|y}) = \sqrt{\frac{2}{\pi}}\frac{y}{x^2 + y^2}</math> | |||
<math> u(x, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} 1 \cdot \sqrt{\frac{2}{\pi}}\frac{y}{\xi^2 + y^2} d\xi</math> | |||
<math> u(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi^2 + y^2} d\xi</math> | |||
<math> u(x, y) = \frac{1}{y \pi} \int_{-\infty}^{\infty} \frac{1}{(\frac{\xi}{y})^2 + 1} d\xi</math> | |||
Vezessük be a <math>z = \frac{\xi}{y},~d\xi = y dz</math> változót: | |||
<math> u(x, y) = \frac{1}{y \pi} \int_{-\infty}^{\infty} \frac{1}{z^2 + 1} ydz</math> | |||
<math> u(x, y) = \frac{y}{y \pi} \left[arctg z \right]_{-\infty}^{\infty}</math> | |||
<math> u(x, y) = \frac{1}{\pi} \left( \frac{\pi}{2} - (-\frac{\pi}{2}) \right) = \frac{\pi}{\pi} = 1</math> | |||
}} | }} | ||
232. sor: | 320. sor: | ||
|szöveg= | |szöveg= | ||
* Először szabaduljunk meg a konvulúciótól: | * Először szabaduljunk meg a konvulúciótól: | ||
<math>(\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) = u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x))) = 1</math> | <math>(\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) = u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x)))</math> | ||
* Majd értékeljük ki a disztribúciót | |||
<math><1, e^{-x^2}> = \int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt{\pi}</math> | * Az <math>u_x' = 1</math>, ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető): | ||
<math> u_x'(\sigma_2\tau_3(\varphi(x))) = <1, \sigma_2\tau_3\varphi(x)></math> | |||
* Majd értékeljük ki a disztribúciót a <math>\varphi = e^{-x^2}</math> függvényen: | |||
<math><1, \sigma_2\tau_3 e^{-x^2}> = \int_{-\infty}^{\infty} e^{-(2x-6)^2}dx = \int_{-\infty}^{\infty} e^{-u^2}\frac{1}{2}du = \frac{\sqrt{\pi}}{2}</math> | |||
}} | |||
{{Rejtett | |||
|mutatott=Zoli megoldása: | |||
|szöveg= | |||
<math>(u * \sigma_2 \tau_3 \delta')\varphi = (u * \delta' (2x-6))\varphi = u(x)(\delta'(2y-6) \varphi (x+y)) =</math> | |||
<math>= u(x) (-\frac{\delta(2y-6)}{4} \varphi'(x+y)) = u(x) \frac{-\varphi'(x+3)}{4} = u'(x) \frac{\varphi(x+3)}{4} = \frac{1}{4}\int_{-\infty}^{\infty} 1 \cdot e^{-(x+3)^2} dx = \frac{\sqrt{\pi}}{4}</math> | |||
}} | }} | ||
292. sor: | 393. sor: | ||
<big>c)</big> <math>C_{\psi_n} = ?</math> | <big>c)</big> <math>C_{\psi_n} = ?</math> | ||
< | {{Rejtett | ||
|mutatott=Megoldás: | |||
|szöveg= | |||
<big>a)</big> <math>-(\frac{x^n}{n!} e^{-x})' = -n\frac{x^{n-1}}{n!} e^{-x} + \frac{x^n}{n!} e^{-x} = x\frac{x^{n-1}}{n!} e^{-x}-n\frac{x^{n-1}}{n!} e^{-x} = \frac{x-n}{n!} x^{n-1} e^{-x}</math> | |||
<big>b)</big> <math>\int_R \psi_n(x)dx = \int_0^\infty -(\frac{x^n}{n!} e^{-x})' dx = -\left[\frac{x^n}{n!} e^{-x}\right]_0^\infty = 0</math> | |||
<big>c)</big> <math>C_{\psi_n} = 2 \pi \int_{-\infty}^\infty \frac{\left| \hat{\psi} \right|^2}{|y|} dy</math> | |||
Először számoljuk ki a wavelet Fourier trafóját (felhasználom, hogy <math>\mathcal{F}(-f') = -iy\mathcal{F}(f),~\mathcal{F}(x^n f) = i^n \mathcal{F}(f)^{(n)}</math>): | |||
<math>\hat{\psi} = \mathcal{F}(-(\frac{x^n}{n!} e^{-x})' \cdot H(x)) = -\frac{iy}{n!} \mathcal{F}(x^n e^{-x}H(x)) = -\frac{iy}{n!} i^n \mathcal{F}(e^{-x}H(x))^{(n)} = -\frac{iy}{n!} i^n \left(\frac{1}{\sqrt{2\pi}} \frac{1}{1+iy}\right)^{(n)} =</math> | |||
<math>= -\frac{iy}{n!} i^n i^n (-1)(-2) \dots(-n) \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}} = -iy \frac{n!}{n!} (-1)^n (-1)^n \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}} = -iy \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}}</math> | |||
<math>C_{\psi_n} = 2 \pi \int_{-\infty}^\infty \frac{\left| \hat{\psi} \right|^2}{|y|} dy = 2 \pi \int_{-\infty}^\infty \frac{1}{2\pi} \frac{|y|^2}{|y|}\frac{1}{(1+y^2)^{n+1}} dy = \int_{0}^\infty \frac{2 y}{(1+y^2)^{n+1}} dy = -\frac{1}{n} \left[\frac{1}{(1+y^2)^n}\right]_0^\infty = -\frac{1}{n} (0 - 1) = \frac{1}{n}</math> | |||
}} | |||
<big>3)</big> <small>[2016PZH]</small> Legyen <math>\psi(x) = xe^{-|x|}, f(x) = e^{-x^2/2}</math>. Adjuk meg f <math> \psi</math> által generált wavelet transzformáltjának Fourier transzformáltját! | <big>3)</big> <small>[2016PZH]</small> Legyen <math>\psi(x) = xe^{-|x|}, f(x) = e^{-x^2/2}</math>. Adjuk meg f <math> \psi</math> által generált wavelet transzformáltjának Fourier transzformáltját! | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>\hat{f}(x) = e^{-y^2/2} </math> | |||
<math>\hat{\psi}(x) = \sqrt{\frac{2}{\pi}} (-2iy) \frac{1}{(1+y^2)^2} </math> | |||
<math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)} = \sqrt{|a|} \cdot \sqrt{2\pi} e^{-y^2/2} \cdot \sqrt{\frac{2}{\pi}} (-2iay) \frac{1}{(1+(ay)^2)^2}</math> | |||
}} | |||
= Numerikus módszerek témakör = | = Numerikus módszerek témakör = | ||
308. sor: | 439. sor: | ||
|szöveg= | |szöveg= | ||
* Az <math>U(x, t)</math>-t keressük szorzat alakban: <math>U(x, t) = X(x)T(T)</math> | * Az <math>U(x, t)</math>-t keressük szorzat alakban: <math>U(x, t) = X(x)T(T)</math> | ||
* A diffegyenlet így átírva: <math>X(t)\ddot{T}(t) = 4 | * A diffegyenlet így átírva: <math>X(t)\ddot{T}(t) = 4 \cdot X''(x)T(T)</math> | ||
* Ez így már szeparálható | * Ez így már szeparálható: | ||
** Figyeljünk arra, hogy a deriváltak a számlálóban legyenek | |||
** A szeparálás utáni hányadosokról pedig tudjuk, hogy negatívak (innen jön a <math>-b^2</math>) | |||
<math>4 \cdot \frac{X''(x)}{X(x)} = \frac{\ddot{T}(t)}{T(T)} = -b^2</math> | <math>4 \cdot \frac{X''(x)}{X(x)} = \frac{\ddot{T}(t)}{T(T)} = -b^2</math> | ||
* Nézzük meg, hogy melyik változóra van feltételünk, aminek a jobb oldalán konstans szerepel. | * Nézzük meg, hogy melyik változóra van feltételünk, aminek a jobb oldalán konstans szerepel. | ||
** Az első két féltétel átírva: X(0)T(t) = X(3)T(t) = 0, minden t-re, vagyis X(0) = X(3) = 0 | ** Az első két féltétel átírva: <math>X(0)T(t) = X(3)T(t) = 0</math>, minden t-re, vagyis <math>X(0) = X(3) = 0</math> | ||
** Tehát az X-re van a T-től nem függő feltételünk, ezért először az X-re oldjuk meg a diffegyenletet! | ** Tehát az X-re van a T-től nem függő feltételünk, ezért először az X-re oldjuk meg a diffegyenletet! | ||
* Oldjuk meg a diff-egyenletet: | * Oldjuk meg a diff-egyenletet: | ||
378. sor: | 511. sor: | ||
<big>2)</big> <small>[2016ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet! | <big>2)</big> <small>[2016ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet! | ||
<math>\frac{\partial | <math>\frac{\partial u}{\partial t} = 9\frac{\partial^2 u}{\partial x^2}</math> | ||
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | <math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>X(x)\ddot{T}(t) = 9 X''(x)T(t)</math> | |||
<math>\frac{\ddot{T}(t)}{T(t)} = \frac{9 X''(x)}{X(x)} = -b^2</math> | |||
Először oldjuk meg x-re: | |||
<math>\frac{9 X''(x)}{X(x)} = -b^2</math> | |||
<math>9 \lambda^2 = -b^2</math> | |||
<math>\lambda = \pm i \frac{b}{3}</math> | |||
<math>X(x) = c_1 \cos{\frac{b}{3}x} + c_2 \sin{\frac{b}{3}x}</math> | |||
<math>X'(x) = -c_1\frac{b}{3} \sin{\frac{b}{3}x} + c_2\frac{b}{3} \cos{\frac{b}{3}x}</math> | |||
<math>X'(0) = c_2\frac{b}{3} = 0</math> | |||
A <math>b = 0</math>-hoz tartozó <math>X(x) = 0</math> megoldás nem érdekel minket, tehát <math>c_2 = 0</math>. | |||
<math>X'(5) = -c_1\frac{b}{3} \sin{\frac{b}{3}5} = 0</math> | |||
Az X azonosan nulla megoldás megint nem érdekel minket, így: | |||
<math>\frac{5}{3}b = k\pi</math> | |||
<math>b = \frac{3}{5}k\pi</math> | |||
Most oldjuk meg a T-re vonatkozó diff-egyenletet | |||
<math>\frac{\dot{T}(t)}{T(t)} = -( \frac{3}{5}k\pi)^2</math> | |||
<math>\lambda = -( \frac{3}{5}k\pi)^2</math> | |||
<math>T_k(t) = d_k e^{-( \frac{3}{5}k\pi)^2 t}</math> | |||
Írjuk fel <math>U_k(x, t)</math>-t! | |||
<math>U_k(x, t) = D_k \cos{\frac{1}{5}k\pi x} \cdot e^{-( \frac{3}{5}k\pi)^2 t} </math> | |||
Majd pedig az ebből generált sort: | |||
<math>U(x, t) = \sum_{k=0}^\infty D_k \cos{\frac{1}{5}k\pi x} \cdot e^{-( \frac{3}{5}k\pi)^2 t} </math> | |||
<math>U(x, 0) = \sum_{k=0}^\infty D_k \cos{\frac{1}{5}k\pi x} = 12\cos\frac{3\pi}{5}x</math> | |||
<math>A_3 = 12</math>, minden más <math>A_i</math> pedig nulla. | |||
Vagyis: | |||
<math>U(x, t) = 12 \cos{\frac{3}{5}\pi x} \cdot e^{-( \frac{9}{5}\pi)^2 t}</math>. | |||
}} | |||
== Parcdiff egyenletek (véges differenciák) == | == Parcdiff egyenletek (véges differenciák) == | ||
439. sor: | 628. sor: | ||
<big>2)</big> <small>[2016ZH2]</small> Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha <math>x \in [0, 5], t \geq 0</math>, az x irányú távolság, h = 1. Mennyi lesz <math> u(2, \frac{1}{18})</math>? | <big>2)</big> <small>[2016ZH2]</small> Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha <math>x \in [0, 5], t \geq 0</math>, az x irányú távolság, h = 1. Mennyi lesz <math> u(2, \frac{1}{18})</math>? | ||
<math>\frac{\partial | <math>\frac{\partial u}{\partial t} = 9\frac{\partial^2 u}{\partial x^2}</math> | ||
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | <math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>\frac{u_{i,j+1} - u_{i,j}}{k} = 9 \frac{u_{i+1,j} - 2 u_{i,j} + u_{i-1,j}}{h^2}</math> | |||
Az egyszerű számolás miatt legyen <math>k = \frac{h^2}{18} = \frac{1}{18}</math> | |||
<math>18(u_{i,j+1} - u_{i,j}) = 9 (u_{i+1,j} - 2 u_{i,j} + u_{i-1,j})</math> | |||
<math>2 u_{i,j+1} = u_{i+1,j} + u_{i-1,j}</math> | |||
<math>u_{i,j+1} = \frac{u_{i+1,j} + u_{i-1,j}}{2}</math> | |||
Ez alapján a keresett érték: | |||
<math>u(2, \frac{1}{18}) = \frac{u(1, 0) + u(3, 0)}{2} = 6 (\cos\frac{3\pi}{5} + \cos\frac{9\pi}{5})</math> | |||
}} | |||
== Jordan normál-forma == | == Jordan normál-forma == | ||
475. sor: | 683. sor: | ||
* A Jordan-normál forma (sajátértékek főátalóban, itt már számít a skalár szorzó) és a transzformációs mátrix (sajátvektorok alkotta mátrix): | * A Jordan-normál forma (sajátértékek főátalóban, itt már számít a skalár szorzó) és a transzformációs mátrix (sajátvektorok alkotta mátrix): | ||
<math>J = \begin{bmatrix} \frac{3}{6} & 0 & 0 \\ 0 & \frac{3}{6} & 0 \\ 0 & 0 & \frac{2}{6}\end{bmatrix},~T = \begin{bmatrix} s_{-3, 1} & s_{-3, 2} & s_{-2}\end{bmatrix} | <math>J = \begin{bmatrix} \frac{3}{6} & 0 & 0 \\ 0 & \frac{3}{6} & 0 \\ 0 & 0 & \frac{2}{6}\end{bmatrix},~T = \begin{bmatrix} s_{-3, 1} & s_{-3, 2} & s_{-2}\end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & 1\end{bmatrix}</math> | ||
* A végeredményt az alábbi alakban kapjuk majd meg: <math>u = T (\sum_{k=0}^\infty J^k) T^{-1} b</math>. Ehhez viszont először invertálni kell T-t. | * A végeredményt az alábbi alakban kapjuk majd meg: <math>u = T (\sum_{k=0}^\infty J^k) T^{-1} b</math>. Ehhez viszont először invertálni kell T-t. | ||
484. sor: | 692. sor: | ||
* Számoljuk ki <math>\sum_{k=0}^\infty J^k</math>-t! | * Számoljuk ki <math>\sum_{k=0}^\infty J^k</math>-t! | ||
<math>\sum_{k=0}^\infty J^k = \begin{bmatrix} \sum_{k=0}^\infty(\frac{1}{2})^k & 0 & 0 \\ 0 & \sum_{k=0}^\infty(\frac{1}{2})^k & 0 \\ 0 & 0 & \sum_{k=0}^\infty(\frac{1}{3})^k\end{bmatrix} = \begin{bmatrix} \frac{1}{1 - \frac{1}{2}} & 0 & 0 \\ 0 & \frac{1}{1 - \frac{1}{2}} & 0 \\ 0 & 0 & \frac{1}{1 - \frac{1}{3}}\end{bmatrix} = \begin{bmatrix} | <math>\sum_{k=0}^\infty J^k = \begin{bmatrix} \sum_{k=0}^\infty(\frac{1}{2})^k & 0 & 0 \\ 0 & \sum_{k=0}^\infty(\frac{1}{2})^k & 0 \\ 0 & 0 & \sum_{k=0}^\infty(\frac{1}{3})^k\end{bmatrix} = \begin{bmatrix} \frac{1}{1 - \frac{1}{2}} & 0 & 0 \\ 0 & \frac{1}{1 - \frac{1}{2}} & 0 \\ 0 & 0 & \frac{1}{1 - \frac{1}{3}}\end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{3}{2}\end{bmatrix}</math> | ||
* A végeredmény tehát (a mátrix szorzásokat már nem kell elvégezni): | * A végeredmény tehát (a mátrix szorzásokat már nem kell elvégezni): | ||
<math>u = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & 1\end{bmatrix} \begin{bmatrix} | <math>u = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & 1\end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{3}{2}\end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\1 & -\frac{2}{3} & -\frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3}\end{bmatrix} \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}</math> | ||
}} | }} | ||
511. sor: | 719. sor: | ||
<math>|f'| = \left|(\sqrt{1 + coshx} - 2 - x)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}} - 1\right|</math> | <math>|f'| = \left|(\sqrt{1 + coshx} - 2 - x)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}} - 1\right|</math> | ||
<math>|f''| = \left|\frac{coshx}{2(1 + coshx)^\frac{1}{2}} - \frac{sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right| = \left|\frac{coshx(1 + coshx) - 2 \cdot sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right| = \left|\frac{coshx + 1 - sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right|</math> | <math>|f''| = \left|\frac{coshx}{2(1 + coshx)^\frac{1}{2}} - \frac{sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right| = \left|\frac{coshx(1 + coshx) - 2 \cdot sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right| = \left|\frac{coshx - sinh^2x + (cosh^2x - sinh^2x)}{4(1 + coshx)^\frac{3}{2}}\right| \left|\frac{coshx - sinh^2x + 1}{4(1 + coshx)^\frac{3}{2}}\right|</math> | ||
Nézzük meg ezeknek a minimumát és maximumát (csak a tartomány szélei érdekesek, nincs lokális minimuma) | Nézzük meg ezeknek a minimumát és maximumát (csak a tartomány szélei érdekesek, nincs lokális minimuma, tehát az x helyére mindenhova négyet vagy ötöt írunk) | ||
<math>min_I|f'| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}} - 1\right|</math> | <math>min_I|f'| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}} - 1\right|</math> | ||
<math>max_I|f''| \leq \left|\frac{cosh4 | <math>max_I|f''| \leq \left|\frac{cosh4 - sinh^25 + 1}{4(1 + cosh4)^\frac{3}{2}}\right|</math> | ||
<math>I < \frac{2 \cdot min_I|f'|}{max_I|f''|} = \left| \frac{\frac{sinh4}{\sqrt{1 + cosh5}} - 2}{\frac{cosh4 | <math>I < \frac{2 \cdot min_I|f'|}{max_I|f''|} = \left| \frac{\frac{sinh4}{\sqrt{1 + cosh5}} - 2}{\frac{cosh4 - sinh^25 + 1}{4(1 + cosh4)^\frac{3}{2}}} \right|</math> | ||
<big>b)</big> Az iteráció konvergens ha <math>|g(x)'| < 1 </math> a tartomány összes pontján. | <big>b)</big> Az iteráció konvergens ha <math>|g(x)'| < 1 </math> a tartomány összes pontján. | ||
525. sor: | 733. sor: | ||
<math>|g'(x)| = \left|(\sqrt{1 + coshx} - 2)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}}\right|</math> | <math>|g'(x)| = \left|(\sqrt{1 + coshx} - 2)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}}\right|</math> | ||
<math>min_I|g'(x)| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}}\right| = \frac{e^4 - e^{-4}}{2 \sqrt | <math>min_I|g'(x)| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}}\right| = \frac{e^4 - e^{-4}}{2 \sqrt{1 + e^5 + e^{-5}}} \approx \frac{e^{1.5}}{2} \geq 1</math> | ||
Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens. | Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens. | ||
531. sor: | 739. sor: | ||
}} | }} | ||
<big>2)</big> <small>[2016ZH2]</small> Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? | <big>2)</big> <small>[2016ZH2]</small> Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? | ||
< | {{Rejtett | ||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Iteráció: <math>|g'(x)| = e^x > 1</math>, az [1, 2] intervallum összes pontján. Ebből következik, hogy az iteráció bármely részintervallumon divergens lesz, tehát nem használható. | |||
* Húrmódszer: | |||
<math>|I| \frac{max_I|f''|}{2 min_I|f'|} = |I| \frac{e^2}{2(e^1 - 1)} < 1</math> | |||
Vagyis az algoritmus konvergens, ha <math>|I| < 2\frac{e-1}{e^2} = 2(e^{-1} - e^{-2})</math> | |||
}} | |||
<big>3)</big> <small>[2016PZH]</small> Az <math>arsh 2x = x</math> egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n? | <big>3)</big> <small>[2016PZH]</small> Az <math>arsh 2x = x</math> egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n? | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága: <math>\frac{|I|}{2^k}</math> | |||
A iteráció esetében a pontosság <math>|g'(x)|</math>-el szorzódik meg minden iteráció után. Ha ez kisebb, mint <math>\frac{1}{2}</math>, akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés. | |||
<math>|g'(x)| = \frac{2}{\sqrt{1 + (2x)^2}}</math> | |||
Az [1,2] tartományon ennek a maximuma <math>\frac{2}{\sqrt{3}}</math> ami nagyobb, mint 1, ezért itt az iteráció még csak nem is konvergens. A [2, 3] tartományon a maximum <math>\frac{2}{\sqrt{17}} \approx 0.485</math>, tehát itt az iteráció gyorsabban konvergál. | |||
}} | |||
<big>4)</big> <small>[2016V1]</small> Newton (érintő) módszerrel keressük a <math>f(x) = 0</math> egyenlet megoldását. Adjuk meg <math>x_{k+1}</math>-et <math>x_k</math> és <math>f</math> segítségével!<br> | |||
Legyen <math>f(x) = e^x - 1,~x\in[-a, a]</math>. Adjuk meg <math>a</math>-t úgy, hogy a módszer konvergáljon!<br> | |||
Mi a konvergencia sebessége? | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}</math> | |||
A konvergencia feltétele: <math>|I| \left| \frac{f(x)f''(x)}{f'(x)^2} \right| < 1</math> a tartomány összes pontján, illetve ezt közelíthetjük a számláló maximumával és nevező minimumával: | |||
<math>2a \left| \frac{\max_I ((e^x - 1) e^x)}{\min_I (e^x)^2} \right| = 2a \frac{(e^a - 1) e^a}{\left(e^{-a}\right)^2} = 2a (e^a - 1) e^{3a} < 1</math> | |||
A konvergencia sebessége: <math>\epsilon_{k+1} \le \frac{|f''|}{2|f'|} \epsilon_k^2</math>, vagy egyszerűbb alakban: <math>d_k \le d_0^{2k}</math> | |||
}} | |||
== Lagrange multiplikátor módszer == | == Lagrange multiplikátor módszer == | ||
592. sor: | 840. sor: | ||
}} | }} | ||
<big>2)</big> <small>[2016ZH2]</small> Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!) | <big>2)</big> <small>[2016ZH2]</small> Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!) | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>F = 3x^2 + y^2 + z^2 - xy - \lambda(x^2 + y^2 + z^2 - 1)</math> | |||
<math>\frac{\partial F}{\partial x} = 6x - y - 2\lambda x = 0</math> | |||
<math>\frac{\partial F}{\partial y} = 2y - x - 2\lambda y = 0</math> | |||
<math>\frac{\partial F}{\partial z} = 2z - 2\lambda z = 0</math> | |||
<math>\frac{\partial F}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0</math> | |||
A harmadik egyenletből: | |||
<math>(1 - \lambda)z = 0</math> | |||
Azaz <math>\lambda = 1</math> vagy <math>z = 0</math> | |||
* <math>\lambda = 1</math> eset: <math>x = y = 0</math>, <math>z = \lambda = 1</math> | |||
* <math>z = 0</math> eset: | |||
Az első egyenletből: <math>y = (6-2\lambda)x</math> | |||
Az második egyenletből egyenletből: | |||
<math>2(6-2\lambda)x - x - 2\lambda (6-2\lambda)x = 0</math> | |||
<math>(4 \lambda^2 - 16\lambda + 11)x = 0</math> (x = 0: ellentmondás) | |||
<math>4 \lambda^2 - 16\lambda + 11 = 0</math> | |||
<math>\lambda_{1,2} = \frac{16 \pm \sqrt{80}}{8} = \frac{4 \pm \sqrt{5}}{2}</math> | |||
A negyedik egyenlet alapján: | |||
<math>x^2 + (2 \pm \sqrt{5})^2 x^2 = 1</math> | |||
Vagyis a megoldások (4 db): | |||
<math>x = \pm \sqrt{\frac{1}{1 + (2 \pm \sqrt{5})^2}}, ~y= \pm(2 \pm \sqrt{5}) \sqrt{\frac{1}{1 + (2 \pm \sqrt{5})^2}},~z=0, \lambda = \frac{4 \pm \sqrt{5}}{2}</math> | |||
}} | |||
<big>3)</big> <small>[2016PZH]</small> Hol lehet feltételes szélsőértéke a <math>x^2 + y^2 + z^2 - 2xy -2xz</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>F = x^2 + y^2 + z^2 - 2xy -2xz - \lambda (x^2 + y^2 + z^2 - 1)</math> | |||
<math>\frac{\partial F}{\partial x} = 2x - 2y -2z -2 \lambda x = 0</math> | |||
<math>\frac{\partial F}{\partial y} = 2y - 2x - 2 \lambda y = 0</math> | |||
<math>\frac{\partial F}{\partial y} = 2z - 2x - 2 \lambda z = 0</math> | |||
<math>\frac{\partial F}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0</math> | |||
Vonjuk ki a második egyenletből a harmadikat: | |||
<math>(1 - \lambda)(y - z) = 0</math> | |||
Azaz <math>\lambda = 1</math> vagy <math>y = z</math> | |||
* <math>\lambda = 1</math> | |||
A második és harmadik egyenlet is azt adja, hogy: | |||
<math>x = 0</math> | |||
Az első egyenlet alapján: | |||
<math>y = -z</math> | |||
Tehát a két megoldás (a negyedik egyenlet alapján): | |||
<math>(0, \pm\sqrt{2}, \mp\sqrt{2}, 1)</math> | |||
* <math>y = z</math> eset | |||
<math>(1 - \lambda) x - 2y = 0</math> | |||
<math>(1 - \lambda) y - x = 0</math> | |||
<math>x^2 + 2y^2 = 1</math> | |||
A második egyenletből: | |||
<math>x = (1 -\lambda) y</math> | |||
Az első egyenletbe írva: | |||
<math>(1 - \lambda)^2 y - 2y = 0</math> | |||
<math>-(\lambda^2 + 1)y = 0</math> | |||
Azaz <math>y = z = x = 0</math>, ellentmondás. | |||
<hr> | <hr> | ||
<big> | <big>A szélsőértékek jellege:</big> | ||
<math>grad(g) = (2x, 2y, 2z)</math> | |||
Az adott pontokban: | |||
<math>grad(g) = (0, \pm 2 \sqrt{2}, \mp 2 \sqrt{2})</math> | |||
Az erre merőleges vektorok: <math>(x, y, y)</math> | |||
A Hesse mátrix: | |||
<math>\left. \begin{bmatrix}{F_{xx}}'' & {F_{xy}}'' & {F_{xz}}'' \\ {F_{yx}}'' & {F_{yy}}'' & {F_{yz}}'' \\ {F_{zx}}'' & {F_{zy}}'' & {F_{zz}}''\end{bmatrix} \right|_{x=0,y=\pm\sqrt{2},z=\mp\sqrt{2},\lambda=1} = \left. \begin{bmatrix}2 - 2\lambda & 2 & 2 \\ 2 & 2 - 2\lambda & 0 \\ 2 & 0 & 2 - 2\lambda \end{bmatrix}\right|_{x=0,y=\pm\sqrt{2},z=\mp\sqrt{2},\lambda=1} = \begin{bmatrix}0 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}</math> | |||
A definitség: | |||
<math>\begin{bmatrix}x & y & y\end{bmatrix} \begin{bmatrix}0 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix}x \\ y \\ y\end{bmatrix} = \begin{bmatrix}4y & 2x & 2x\end{bmatrix} \begin{bmatrix}x \\ y \\ y\end{bmatrix} = 16xy</math> | |||
Ez indefinit, itt nincs szélsőérték. | |||
}} | |||
== Variáció számítás == | == Variáció számítás == | ||
619. sor: | 973. sor: | ||
Az f függvény, amire alkalmazni kell az EL-t, az az integrál belseje: <math>f(x, y, y') = y'^2 + x^3 - 2xy</math>. Ha lenne feltétel is, akkor ugyanúgy be kéne vezetni egy <math>F = f - \lambda g</math> függvényt, és arra kéne megoldani az EL-t. | Az f függvény, amire alkalmazni kell az EL-t, az az integrál belseje: <math>f(x, y, y') = y'^2 + x^3 - 2xy</math>. Ha lenne feltétel is, akkor ugyanúgy be kéne vezetni egy <math>F = f - \lambda g</math> függvényt, és arra kéne megoldani az EL-t. | ||
<math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 2x - \frac{d}{d x}2y' = 2x - 2y'' = 0</math> | <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = -2x - \frac{d}{d x}2y' = -2x - 2y'' = 0</math> | ||
<math>y''(x) = x</math> | <math>y''(x) = -x</math> | ||
<math>y'(x) = \frac{x^2}{2} + c</math> | <math>y'(x) = -\frac{x^2}{2} + c</math> | ||
<math>y(x) = \frac{x^3}{6} + cx + d</math> | <math>y(x) = -\frac{x^3}{6} + cx + d</math> | ||
A kezdeti felételeket felhasználva: | A kezdeti felételeket felhasználva: | ||
<math>y(-1) = | <math>y(-1) = \frac{1}{6} - c + d = \frac{1}{6}</math> | ||
<math>d | <math>c = d</math> | ||
<math>y(2) = \frac{8}{6} + 2c + d = \frac{ | <math>y(2) = -\frac{8}{6} + 2c + d = -\frac{4}{3} + 3c = \frac{5}{3}</math> | ||
<math>3c = \frac{9}{3} = 3</math> | |||
<math>y(x) = \frac{x^3}{6} + | Tehát <math>c = 1,~d = 1</math>, azaz a megoldás: | ||
<math>y(x) = -\frac{x^3}{6} + x + 1</math>. | |||
}} | }} | ||
650. sor: | 1 006. sor: | ||
|szöveg= | |szöveg= | ||
<math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 2x - \frac{d}{d x}3y'^2 = 2x - 6y'y'' = 0</math> | <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = -2x - \frac{d}{d x}3y'^2 = -2x - 6y'y'' = 0</math> | ||
Vezessünk be egy <math>p = y' = \frac{dy}{dx}, ~p' = y'' = \frac{dp}{dx}</math> változót, és erre oldjuk meg a differenciálegyenletet (ha az egyenletből az x hiányozna, akkor y szerinti deriválásra kéne áttérni). | Vezessünk be egy <math>p = y' = \frac{dy}{dx}, ~p' = y'' = \frac{dp}{dx}</math> változót, és erre oldjuk meg a differenciálegyenletet (ha az egyenletből az x hiányozna, akkor y szerinti deriválásra kéne áttérni). | ||
<math>x = 3 p \frac{dp}{dx}</math> | <math>-x = 3 p \frac{dp}{dx}</math> | ||
<math>3 p~dp = x~dx</math> | <math>3 p~dp = -x~dx</math> | ||
<math>\frac{3}{2} p^2 = \frac{x^2}{2} + c</math> | <math>\frac{3}{2} p^2 = -\frac{x^2}{2} + c</math> | ||
Írjuk vissza az y'-t p helyére | Írjuk vissza az y'-t p helyére | ||
<math>\left(\frac{dy}{dx}\right)^2 = \frac{x^2}{3} + c_2</math> | <math>\left(\frac{dy}{dx}\right)^2 = -\frac{x^2}{3} + c_2</math> | ||
<math>dy^2 = \left(-\frac{x^2}{3} + c_2\right)dx^2</math> | |||
<math>dy = \pm \left(\sqrt{\frac{1}{3}} \sqrt{-x^2 + c_3}\right) dx</math> | |||
Ez egy sokkal nehezebb integrál, mint ami ZH-kon elő szokott fordulni. | |||
Amúgy elvileg megoldható <math>x = \sqrt{c_3} \sin u</math> és <math>dx = \sqrt{c_3} \cos u\,du</math> helyettesítéssel meg néhány trigonometrikus összefüggés felhasználásával, és ez lesz a eredménye: | |||
<math>y = \pm \frac{1}{2\sqrt{3}} \left(x \sqrt{c_3 - x^2} + c_3 \arctan(\frac{x}{\sqrt{c_3 - x^2}}) \right) + d</math> | |||
A két kezdeti feltételt felhasználva ki lehet számolni a két konstans értékét (<math>c_3, d</math>). De analitikusan ez még a Mathematica-nak sem sikerült. Persze lehet próbálkozni numerikus módszerekkel :p | |||
Valami nagyon el van b*va ezzel a feladattal. | |||
https://s-media-cache-ak0.pinimg.com/236x/55/08/4b/55084be16a6b92e2cdb97951f371f4df.jpg | |||
}} | |||
<big>3)</big> <small>[2016V1]</small> Keressük meg az extremális függvényt az <math>I(y) = \int_0^1 y(2-y') dx,~y(0) = 1,~ y(1) = 2</math> operátorra vonatkozóan a <math>J(y) = \int_0^1 y'^2 = \frac{13}{3}</math> feltétel mellett! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>F = y(2-y') - \lambda y'^2</math> | |||
Erre alkalmazzuk az Euler-Lagrange egyenletet: | |||
<math>2-y' - \frac{d}{dx}(-y - 2\lambda y') = 2-y' + y' + 2\lambda y'' = 2 + 2\lambda y'' = 0</math> | |||
<math>y'' = \frac{-1}{\lambda}</math> | |||
<math>\frac{dy'}{dx} = \frac{-1}{\lambda}</math> | |||
<math>\int dy' = \int \frac{-1}{\lambda} dx</math> | |||
<math>y' = \frac{-x}{\lambda} + c_1</math> | |||
<math>\frac{dy}{dx} = \frac{-x}{\lambda} + c_1</math> | |||
<math>\int dy = \int \frac{-x}{\lambda} + c_1 dx</math> | |||
<math>y = \frac{-x^2}{2 \lambda} + c_1 x + c_2</math> | |||
Használjuk fel a kezdeti feltételeket! | |||
<math>y(0) = c_2 = 1</math> | |||
<math>y(1) = \frac{-1}{2 \lambda} + c_1 + 1 = 2</math> | |||
<math>c1 = 1 + \frac{1}{2 \lambda}</math> | |||
A <math>\lambda</math>-hoz ki kell számolni J(y)-t. | |||
<math>y = \frac{-x^2}{2 \lambda} + x + \frac{x}{2 \lambda} + 1</math> | |||
<math> | <math>y' = \frac{-x}{\lambda} + 1 + \frac{1}{2 \lambda}</math> | ||
<math> | <math>y'^2 = \frac{x^2}{\lambda^2} - \frac{2x}{\lambda} + 1 - \frac{2x}{2\lambda^2} + \frac{2}{2\lambda} + \frac{1}{4 \lambda^2} = \frac{1}{\lambda^2} \left( x^2 - 2x\lambda + \lambda^2 - x + \lambda + \frac{1}{4} \right)</math> | ||
<math>\int_0^1 y'^2 = \frac{1}{\lambda^2} \left[ \frac{x^3}{3} - \lambda x^2 + \lambda^2 x - \frac{x^2}{2} + \lambda x + \frac{x}{4} \right]_0^1 = \frac{1}{\lambda^2} \left( \frac{1}{3} - \lambda + \lambda^2 - \frac{1}{2} + \lambda + \frac{1}{4} \right) = 1 + \frac{1}{12\lambda^2} = \frac{13}{3}</math> | |||
<math>\lambda^2 = \frac{3}{120} = \frac{1}{40}</math> | |||
<math> | <math>\lambda = \pm \frac{1}{\sqrt{40}}</math> | ||
Visszaírva y-ba: | |||
<math>y(x) = \mp \sqrt{10} x^2 + (1\pm\sqrt{10}) x + 1</math> | |||
}} | }} |
A lap jelenlegi, 2016. október 22., 12:36-kori változata
Az Analízis (MSc) tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni.
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \dot{x}(t) = 2y(t) - x(t) + 1}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \dot{y}(t) = 3y(t) - 2x(t)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(0) = 0,~y(0) = 1}
- Vegyük mindkét egyenlet Laplace trafóját (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X := \mathcal{L}(x),~ Y := \mathcal{L}(y)} ):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle sX - x(0) = 2Y - X + \frac{1}{s}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle sY - y(0) = 3Y - 2X}
- Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (s+1)X + (-2)Y = \frac{1}{s}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (2)X + (s-3)Y = 1}
- Mátrixos alakra hozva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}s+1 & -2 \\ 2 & s-3\end{bmatrix} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}\frac{1}{s} \\ 1\end{bmatrix}}
- Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X = \frac{det\left(\begin{bmatrix}\frac{1}{s} & -2 \\ 1 & s-3\end{bmatrix}\right)}{det\left(\begin{bmatrix}s+1 & -2 \\ 2 & s-3\end{bmatrix}\right)} = \frac{\frac{s-3}{s} + 2}{(s+1)(s-3)+4} = \frac{3 (s-1)}{s(s^2 - 2s + 1)} = \frac{3 (s-1)}{s(s-1)^2} = \frac{3}{s(s-1)}}
- Az inverz laplacehoz bontsuk parciális törtekre:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{A}{s} + \frac{B}{s-1} = \frac{A(s-1) + Bs}{s(s-1)} = \frac{3}{s(s-1)}}
- Együtthatókat összehasonlítva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A + B = 0, -A = 3}
- Ahonnan:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A = -3,~B = 3}
- Vagyis Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(s) = \frac{-3}{s} + \frac{3}{s-1}}
- Tehát a táblázat alapján Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t) = -3 + 3e^t}
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \ddot{x}(t) = 2x(t) - 3y(t)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \ddot{y}(t) = x(t) - 2y(t)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1}
- Vegyük mindkét egyenlet Laplace trafóját:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s^2X - sx(0) - \dot{x}(0) = 2X - 3Y}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s^2Y - sy(0) - \dot{y}(0) = X - 2Y}
- Átrendezve és mátrixos alakra hozva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}s^2-2 & 3 \\ -1 & s^2+2\end{bmatrix} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}0 \\ 1\end{bmatrix}}
- Megoldás X-re:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X = \frac{det\left(\begin{bmatrix}0 & 3 \\ 1 & s^2+2\end{bmatrix}\right)}{det\left(\begin{bmatrix}s^2-2 & 3 \\ -1 & s^2+2\end{bmatrix}\right)} = \frac{-3}{(s^2-2)(s^2+2)+3} = \frac{-3}{s^4-1} = \frac{-3}{(s^2-1)(s^2+1)}}
- Parc törtek:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{A}{s^2-1} + \frac{B}{s^2+1} = \frac{(A+B)s^2 + (A-B)}{s^4-1} = \frac{-3}{s^4-1}}
- Ahonnan:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A = -\frac{3}{2},~B = \frac{3}{2}}
- Inverz Laplace után: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t) = -\frac{3}{2}sht + \frac{3}{2}sint}
3) [2016ZH1] Transzformáljuk elsőrendűvé a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'' + xy' = x} differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
- Számítsuk ki a tagok Laplace trafóját (x szerint):
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}_x(y'') = s^2 Y - s y(0) - y'(0)}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}_x(xy') = \mathcal{L}_x(xf(x)) = -(\mathcal{L}_x(f(x)))' = -(\mathcal{L}_x(y'))' = -(s Y(s) - y(0))' = -(s' Y(s) + s Y'(s)) = -Y - sY' }
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}_x(x) = \frac{1}{s^2}}
- Tehát az egyenlet Laplace transzformáltja (elsőrendű Y-ban):
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{x \to 0+}f'(x) = ?, ~ \lim_{x \to 0+}f''(x) = ?, ha ~\mathcal{L}(f) = \frac{s^2-3s+1}{5s^4-4s^3+8}}
- Számoljuk ki Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}'(f)} -et!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}'(f) = s\mathcal{L}(f) - \lim_{x \to 0+}f(x)}
- Vegyük ennek az egyenletnek a végtelenben vett határértékét:
- Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle lim_{s \to \infty}\mathcal{L}'(f)=0}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle lim_{s \to \infty}s\mathcal{L}(f) = lim_{s \to \infty}\frac{s(s^2-3s+1)}{5s^4-4s^3+8} = 0}
- Tehát:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 = 0 - f(0+)}
- Amiből:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(0+) = 0}
- Csináljuk meg ugyanezt Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}''(f)} -re!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}''(f) = s^2\mathcal{L}(f) - sf(0+) - f'(0+)}
- Vagyis:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 = \frac{1}{5} - 0 - f'(0+)}
- Amiből:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f'(0+) = \frac{1}{5}}
- Végül csináljuk meg ugyanezt Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}'''(f)} -re!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}'''(f) = s^3\mathcal{L}(f) - s^2f(0+) - sf'(0+) - f''(0+)}
- Itt a határérték picit bonyolultabb:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 = lim_{s \to \infty}(\frac{s}{5} - 0 - \frac{s}{5} - f''(0+))}
- Amiből:
2) [2016V2] Számítsuk ki az alábbi integrált: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_0^\infty \frac{\cos t-e^{-t}}{t} dt}
Laplace tulajdonságok miatt Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_0^\infty \frac{f(t)}{t} dt = \int_0^\infty \mathcal{L}(f)(s) ds} .
Jelen esetben Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(t) = \cos t - e^{-t}} , számoljuk ki az integrált:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_0^\infty \mathcal{L}(f) ds = \int_0^\infty \frac{s}{s^2+1} - \frac{1}{s+1} ds = \int_0^\infty \frac12 \frac{2s}{s^2+1} - \frac{1}{s+1} = }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left[ \frac12 \ln|s^2+1| - \ln |s+1| \right]_0^\infty = \left[ \ln \sqrt{|s^2+1|} - \ln |s+1| \right]_0^\infty = \left[ \ln \frac{\sqrt{|s^2+1|}}{|s+1} \right]_0^\infty = \ln 1 - \ln 1 = 0}Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével! Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'(x) - 4y(x) = 8}
- Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y = \mathcal{F}(y)} )!:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle isY - 4Y = 8\sqrt{2\pi}\delta(s)}
- Átrendezve:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -i(s+4i)Y = 8\sqrt{2\pi}\delta(s)}
- Aminek a disztribúció értelemben vett megoldás Y-ra:
- Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s+4i \neq 0} , akkor leoszthatunk vele.
- Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s+4i = 0} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 \cdot Y(-4i) = 0} , vagyis Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y(-4i)} bármilyen konstans lehet, ezt jelöljük pl c-vel.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y = c \cdot \delta(s+4i) + \frac{8\sqrt{2\pi}\delta(s)}{is-4}}
- Az összeg jobboldali tagja egyszerűsíthető, ha kihasználjuk, hogy az egy disztribúció (a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \delta(s)} a nevezőben lévő s-be is nullát helyettesít):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{8\sqrt{2\pi}\delta(s)}{is-4}(\varphi) = \delta(s)\frac{8\sqrt{2\pi}}{is-4}(\varphi) = \delta(s)(\frac{8\sqrt{2\pi}}{is-4}\varphi) = \frac{8\sqrt{2\pi}}{i0-4}\varphi(0) = -2\sqrt{2\pi}\delta(s)}
- Vagyis:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y = c \cdot \delta(s+4i) + -2\sqrt{2\pi}\delta(s)}
- Aminek vegyük az inverz Fourier transzformáltját:
- Megjegyzés: A táblázatban szerepel Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(f(t)+a) = e^{ias}\mathcal{F}(f(t))} , de nekünk inverz trafó kell
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}^{-1}(F(s) + a) = \mathcal{F}(F(s) + a)|_{t=-s} = e^{ia(-t)}(\mathcal{F}(F(s))|_{t=-s}) = e^{ia(-t)}\mathcal{F}^{-1}(F(s))}
2) [2016ZH1] Transzformáljuk elsőrendűvé a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'' + xy' = x} differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
- Számítsuk ki az egyenlet tagjainak Fourier trafóját (x szerint):
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}_x(y'') = i^2 s^2 \hat{y} = -s^2 \hat{y}}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}_x(xy') = \frac{\mathcal{F}_x(y')'}{-i} = i\mathcal{F}_x(y')' = i(is\hat{y})'= -(s\hat{y})' = -\hat{y} - s\hat{y}'}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}_x(x) = \sqrt{2\pi}i\delta'(s)}
- Vagyis az egyenlet Fourier trafója (elsőrendű diff-egyenlet Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{y}} -ra):
3) [2016V1] Fourier transzformáció segítségével határozzuk meg u(x, t)-t, ha
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial^2 u}{\partial^2 x} + \frac{\partial^2 u}{\partial y^2} = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, 0) = 1,~x \in \mathcal{R},y \geq 0}
Egy u(x, y) függvény x szerinti Fourier trafójának a definíciója:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{u}(s, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, y) e^{-ixs} dx }
Vegyük az egyenlet x szerinti Fourier trafóját (a deriválás x-ben Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i \cdot s} -el szorzás):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -s^2 \hat{u}(s,y) + \frac{\partial^2}{\partial y^2}\hat{u}(s, y) = 0}
Oldjuk meg a diff-egyenletet y-ra (az y szerinti deriváltat jelölje a vessző):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{u}_s''(y) - s^2 \hat{u}_s(y) = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda^2 = s^2 }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{u}_s(y) = c_1(s) e^{|s|y} + c_2(s) e^{-|s|y}}
Tudjuk, hogy ez a kifejezés Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s \to \infty} -ben nullához tart, mert egy Fourier trafó:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle lim_{s \to \infty}c_1(s) e^{|s|y} + c_2(s) e^{-|s|y} = 0}
Ami, tekintve, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y \geq 0} , csak akkor teljesülhet, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c_1(s) = 0} .
Tehát:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{u}_s(y) = c_2(s) e^{-|s|y}}
A kezdeti feltétel Fourier trafója:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{u}(0) = \sqrt{2 \pi} \delta (s)}
A két egyenletet összevetve:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c_2(s) = \sqrt{2 \pi} \delta (s)}
Vagyis: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{u}(s, y) = \sqrt{2 \pi} \delta (s) e^{-|s|y}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, y)} -hoz vegyük ennek az x szerinti inverz Fourier trafóját:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{u}(s, y) = \mathcal{F}(1) \cdot e^{-|s|y}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, y) = 1 * \mathcal{F}^{-1}(e^{-|s|y})}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}^{-1}(e^{-|s|y}) = \sqrt{\frac{2}{\pi}}\frac{y}{x^2 + y^2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} 1 \cdot \sqrt{\frac{2}{\pi}}\frac{y}{\xi^2 + y^2} d\xi}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi^2 + y^2} d\xi}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, y) = \frac{1}{y \pi} \int_{-\infty}^{\infty} \frac{1}{(\frac{\xi}{y})^2 + 1} d\xi}
Vezessük be a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z = \frac{\xi}{y},~d\xi = y dz} változót:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, y) = \frac{1}{y \pi} \int_{-\infty}^{\infty} \frac{1}{z^2 + 1} ydz}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, y) = \frac{y}{y \pi} \left[arctg z \right]_{-\infty}^{\infty}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, y) = \frac{1}{\pi} \left( \frac{\pi}{2} - (-\frac{\pi}{2}) \right) = \frac{\pi}{\pi} = 1}Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x) = 3xe^{-x}H(x)} Fourier transzformáltját, ha tudjuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}}
Vezessük be a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle g(x) = e^{-x}H(x)} jelölést!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(f(x)) = 3 \mathcal{F}(x \cdot g(x)) = 3 \cdot \frac{\mathcal{F}(g(x))'}{-i} = 3i \cdot (\frac{1}{\sqrt{2\pi}}\frac{1}{1+iy})' = 3i \cdot (-1) \cdot i \cdot \frac{1}{\sqrt{2\pi}}\frac{1}{(1+iy)^2} = 3 \cdot \frac{1}{\sqrt{2\pi}}\frac{1}{(1+iy)^2}}Disztribúciók
1) [2015ZH1] Adjuk meg Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \delta} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \delta'} lineáris kombinációjaként az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle e^{3x-2}\delta'(x)} disztribúciót!
- Nézzük meg, hogy egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi} függvényre hogyan viselkedik a feladatban szereplő disztribúció!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (e^{3x-2}\delta'(x))(\varphi) = \delta'(x)(e^{3x-2} \varphi) = -\delta(x)(e^{3x-2} \varphi)' = -\delta(x)(3 \cdot e^{3x-2} \varphi + e^{3x-2} \varphi') = -3e^{-2} \varphi(0) - e^{-2} \varphi'(0) = (-3e^{-2}\delta(x) + e^{-2}\delta'(x))(\varphi)}
- Vagyis:
2) [2016ZH1] Számítsuk ki a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T = e^{-x^2}} reguláris disztribúcuó és a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \delta'} disztribúció konvolúciójának hatását a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi(x) = x^2} függvényre: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (T * \delta')x^2 = ?}
- Elődáson volt, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (T * \delta') = T'}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (T * \delta')\varphi(x+y) = T_x (\delta'_y(\varphi(x+y))) = T_x(-\delta_y(\varphi'(x+y))) = T_x(-\varphi'(x)) = T_x'(\varphi(x))}
- Ezt felasználva alkalmazzuk a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T'} disztribúciót a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi} függvényre:
3) [2016ZH1] Mi az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (x-3)f = 0}
disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f = c \cdot \delta(x-3)}
- Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x-3 \neq 0} , akkor leoszthatunk vele, és azt kapjuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f = 0,~ha~x-3 \neq 0} .
- Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x-3 = 0} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 \cdot f(3) = 0} , vagyis Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(3)} bármilyen konstans értéket felvehet, ezt jelöljük pl c-vel.
- Tehát ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x \neq 3} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f = 0} , ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = 3} , akkor tetszőleges Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c} értékű, ez röviden: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f = c \cdot \delta(x-3)}
4) [2016ZH1] Adjuk meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle e^{3x}\delta''(x-2)}
disztribúciót a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \delta}
eltolt deriváltjainak lineáris kombinációjaként!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle e^{3x}\delta''(x-2)(\varphi) = \delta''(x-2)(e^{3x}\varphi) = \delta(x-2)((e^{3x}\varphi)'') = \delta(x-2)((3e^{3x}\varphi + e^{3x}\varphi')') = }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle = \delta(x-2)(9e^{3x}\varphi + 6e^{3x}\varphi' + e^{3x}\varphi'') = 9e^{6}\varphi(2) + 6e^{6}\varphi'(2) + e^{6}\varphi''(2) = (9e^{6}\delta(x-2) - 6e^{6}\delta'(x-2) + e^{6}\delta''(x-2))(\varphi)}5) [2016PZH] Legyen u az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x) = x - 3} által generált reguláris disztribúció, Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi(x) = e^{-x^2}} . Számítsuk ki Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (\sigma_2\tau_3\delta' * u)\psi} -t!
- Először szabaduljunk meg a konvulúciótól:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) = u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x)))}
- Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_x' = 1} , ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_x'(\sigma_2\tau_3(\varphi(x))) = <1, \sigma_2\tau_3\varphi(x)>}
- Majd értékeljük ki a disztribúciót a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi = e^{-x^2}} függvényen:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (u * \sigma_2 \tau_3 \delta')\varphi = (u * \delta' (2x-6))\varphi = u(x)(\delta'(2y-6) \varphi (x+y)) =}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle = u(x) (-\frac{\delta(2y-6)}{4} \varphi'(x+y)) = u(x) \frac{-\varphi'(x+3)}{4} = u'(x) \frac{\varphi(x+3)}{4} = \frac{1}{4}\int_{-\infty}^{\infty} 1 \cdot e^{-(x+3)^2} dx = \frac{\sqrt{\pi}}{4}}Wavelet trafók
Megjegyzés: a kitevőbe írt törtek (pl: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle e^{-\frac{x^2}{2}}} ) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni.
1) [2015ZH1] Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi(x) = (1 - x^2)e^{-x^2 / 2}} , a mexikói kalap wavelet.
a) Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x) = e^{-|x|}} . Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(W_{\psi}f_a(b)) = ?}
b) Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle g(x) = x^2} . Tudjuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_{R}e^{-x^2 / 2}dx=\sqrt{2\pi}.~W_{\psi}g_a(b) = ?}
a) A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{f}(y) = \sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{\psi}(y) = \mathcal{F}(e^{-x^2 / 2}) - \mathcal{F}(x^2 \cdot e^{-x^2 / 2}) = \mathcal{F}(e^{-x^2 / 2}) - \frac{\mathcal{F}(e^{-x^2 / 2})''}{(-i)^2} = \mathcal{F}(e^{-x^2 / 2}) + \mathcal{F}(e^{-x^2 / 2})''}
A táblázatban nincs benne, de közismert, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(e^{-x^2 / 2}) = e^{-y^2 / 2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{\psi}(y) = e^{-y^2 / 2} + (e^{-y^2 / 2})'' = e^{-y^2 / 2} + (-y(e^{-y^2 / 2}))' = e^{-y^2 / 2} -e^{-y^2 / 2} + y^2(e^{-y^2 / 2}) = y^2(e^{-y^2 / 2})}
A táblázatból kiolvasott képletbe behelyettesítve:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \left(\sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}\right) \cdot \left((ay)^2(e^{-(ay)^2 / 2})\right)}
b) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W_{\psi}g_a(b) = <\psi_{a, b}, g> = \int_{-\infty}^{\infty} (1 - \frac{x-b}{a}^2)e^{-((x-b)/a)^2 / 2} x^2 dx}
Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u = \frac{x-b}{a},~x = au + b,~ dx = a \cdot du}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W_{\psi}g_a(b) = \int_{-\infty}^{\infty} (1 -u^2)e^{-u^2 / 2} (au + b)^2 a \cdot du}
Használjuk ki, hogy korábban már kiszámoltuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (e^{-u^2 / 2})'' = -(1 -u^2)e^{-u^2 / 2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W_{\psi}g_a(b) = -a \int_{-\infty}^{\infty}(e^{-u^2 / 2})'' (au + b)^2 du}
Amit kétszer parciálisan integrálva meg is kapjuk az eredményt:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W_{\psi}g_a(b) = -a \left( \left[(e^{-u^2 / 2})' (au + b)^2\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty}(e^{-u^2 / 2})' 2a \cdot (au + b) du \right) = 2a^2 \int_{-\infty}^{\infty}(e^{-u^2 / 2})' \cdot (au + b) du = 2a^2 \left( \left[e^{-u^2 / 2} (au + b) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty}e^{-u^2 / 2} \cdot a du \right) = -2a^3 \sqrt{2\pi}}2) [2016ZH1] A Poisson wavelet a következő: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}}
a) Mutassuk meg, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi(x) = -(\frac{x^n}{n!} e^{-x})'} , ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x \geq 0}
b) Mutassuk meg, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_R \psi_n(x)dx = 0}
c) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C_{\psi_n} = ?}
a) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -(\frac{x^n}{n!} e^{-x})' = -n\frac{x^{n-1}}{n!} e^{-x} + \frac{x^n}{n!} e^{-x} = x\frac{x^{n-1}}{n!} e^{-x}-n\frac{x^{n-1}}{n!} e^{-x} = \frac{x-n}{n!} x^{n-1} e^{-x}}
b) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_R \psi_n(x)dx = \int_0^\infty -(\frac{x^n}{n!} e^{-x})' dx = -\left[\frac{x^n}{n!} e^{-x}\right]_0^\infty = 0}
c) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C_{\psi_n} = 2 \pi \int_{-\infty}^\infty \frac{\left| \hat{\psi} \right|^2}{|y|} dy}
Először számoljuk ki a wavelet Fourier trafóját (felhasználom, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(-f') = -iy\mathcal{F}(f),~\mathcal{F}(x^n f) = i^n \mathcal{F}(f)^{(n)}} ):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{\psi} = \mathcal{F}(-(\frac{x^n}{n!} e^{-x})' \cdot H(x)) = -\frac{iy}{n!} \mathcal{F}(x^n e^{-x}H(x)) = -\frac{iy}{n!} i^n \mathcal{F}(e^{-x}H(x))^{(n)} = -\frac{iy}{n!} i^n \left(\frac{1}{\sqrt{2\pi}} \frac{1}{1+iy}\right)^{(n)} =}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle = -\frac{iy}{n!} i^n i^n (-1)(-2) \dots(-n) \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}} = -iy \frac{n!}{n!} (-1)^n (-1)^n \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}} = -iy \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C_{\psi_n} = 2 \pi \int_{-\infty}^\infty \frac{\left| \hat{\psi} \right|^2}{|y|} dy = 2 \pi \int_{-\infty}^\infty \frac{1}{2\pi} \frac{|y|^2}{|y|}\frac{1}{(1+y^2)^{n+1}} dy = \int_{0}^\infty \frac{2 y}{(1+y^2)^{n+1}} dy = -\frac{1}{n} \left[\frac{1}{(1+y^2)^n}\right]_0^\infty = -\frac{1}{n} (0 - 1) = \frac{1}{n}}3) [2016PZH] Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi(x) = xe^{-|x|}, f(x) = e^{-x^2/2}} . Adjuk meg f Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi} által generált wavelet transzformáltjának Fourier transzformáltját!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{f}(x) = e^{-y^2/2} }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{\psi}(x) = \sqrt{\frac{2}{\pi}} (-2iy) \frac{1}{(1+y^2)^2} }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)} = \sqrt{|a|} \cdot \sqrt{2\pi} e^{-y^2/2} \cdot \sqrt{\frac{2}{\pi}} (-2iay) \frac{1}{(1+(ay)^2)^2}}Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(0, t) = u(3, t) = 0,~u(x,0)=sin\frac{4\pi}{3}x,~\frac{\partial u}{\partial t}(x, 0) = 2\sin\frac{\pi}{3}x}
- Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, t)} -t keressük szorzat alakban: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, t) = X(x)T(T)}
- A diffegyenlet így átírva: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(t)\ddot{T}(t) = 4 \cdot X''(x)T(T)}
- Ez így már szeparálható:
- Figyeljünk arra, hogy a deriváltak a számlálóban legyenek
- A szeparálás utáni hányadosokról pedig tudjuk, hogy negatívak (innen jön a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -b^2} )
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 4 \cdot \frac{X''(x)}{X(x)} = \frac{\ddot{T}(t)}{T(T)} = -b^2}
- Nézzük meg, hogy melyik változóra van feltételünk, aminek a jobb oldalán konstans szerepel.
- Az első két féltétel átírva: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(0)T(t) = X(3)T(t) = 0} , minden t-re, vagyis Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(0) = X(3) = 0}
- Tehát az X-re van a T-től nem függő feltételünk, ezért először az X-re oldjuk meg a diffegyenletet!
- Oldjuk meg a diff-egyenletet:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 4 \cdot \frac{X''(x)}{X(x)} = -b^2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 4 \cdot X''(x) + b^2 \cdot X(x) = 0}
- Írjuk fel a karakterisztikus függvényt!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 4 \cdot \lambda^2 + b^2 = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda^2 = -\frac{b^2}{4}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = \pm i \frac{b}{2}}
- Vagyis a diff-egyenlet megoldása:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(x) = c_1 \cos{\frac{b}{2}x} + c_2 \sin{\frac{b}{2}x}}
- Vizsgáljuk meg a kezdeti feltételeket:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(0) = c_1 \cos{0} + c_2 \sin{0} = c_1 = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(3) = c_2 \sin{\frac{b}{2}3} = 0}
Ami csak olyan egész k értékekre teljesülhet, amikre: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{b}{2}3 = k \pi,~b = \frac{2}{3} k \pi}
- Most oldjuk meg a diff-egyenletet T(t)-re, de a b helyére az újonnan kapott képletet írjuk be.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\ddot{T}(t)}{T(t)} = -(\frac{2}{3} k \pi)^2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda^2 = -(\frac{2}{3} k \pi)^2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = \pm \frac{2}{3} i k \pi}
- A T-re vonatkozó (k-tól függő) diff-egynelet:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T_k(t) = a_k \cos{\frac{2}{3} k \pi t} + b_k \sin{\frac{2}{3} k \pi t}}
- Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, t)} -re vonatkozó k-tól függő egyenlet tehát:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_k(x, t) = c_2 \sin{\frac{k}{3} \pi x} (a_k \cos{\frac{2k}{3} \pi t} + b_k \sin{\frac{2k}{3} \pi t})}
- Vezessük be az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_k = c_2 \cdot a_k} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B_k = c_2 \cdot b_k} konstansokat!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_k(x, t) = A_k \sin{\frac{k}{3} \pi x} \cos{\frac{2k}{3} \pi t} + B_k \sin{\frac{k}{3} \pi x} \sin{\frac{2k}{3} \pi t}}
- Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, t)} pedig felírható az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_k(x, t)} -k összegeként az összes k-ra.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, t) = \sum_0^\infty U_k(x, t)}
- A maradék két feltétel segítségével számoljuk ki az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_k} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B_k} konstansok értékeit.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x,0)=\sum_0^\infty A_k \sin{\frac{k}{3} \pi x} \cos{0} + B_k \sin{\frac{k}{3} \pi x} \sin{0} = \sum_0^\infty A_k \sin{\frac{k}{3} \pi x} = sin\frac{4\pi}{3}x}
Amiből az együtthatók összehasonlításával megkapjuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_4 = 1} , minden más Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_i = 0} , ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle i \neq 4}
- A másik feltételhez ki kell számolni az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial U}{\partial t}(x, t)} -t.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial U}{\partial t}(x, t) = \sum_0^\infty A_k \sin{\frac{k}{3} \pi x} \sin{\frac{2k}{3} \pi t} (-\frac{2k}{3} \pi) + B_k \sin{\frac{k}{3} \pi x} \cos{\frac{2k}{3} \pi t} (\frac{2k}{3} \pi)}
- A feltételbe beírva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial U}{\partial t}(x, 0) = \sum_0^\infty A_k \sin{\frac{k}{3} \pi x} \sin{0} (-\frac{2k}{3} \pi) + B_k \sin{\frac{k}{3} \pi x} \cos{0} (\frac{2k}{3} \pi) = \sum_0^\infty B_k \sin{\frac{k}{3} \pi x} (\frac{2k}{3} \pi) = 2\sin\frac{\pi}{3}x}
Innen pedig: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B_1 (\frac{2}{3} \pi) = 2,~ B_1 = \frac{2}{(\frac{2}{3} \pi)} = \frac{3}{\pi}} , minden más Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B_i} pedig nulla.
Vagyis a megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, t) = \sin{\frac{4}{3} \pi x} \cos{\frac{8}{3} \pi t} + \frac{3}{\pi} \sin{\frac{1}{3} \pi x} \sin{\frac{2}{3} \pi t}}
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial u}{\partial t} = 9\frac{\partial^2 u}{\partial x^2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(x)\ddot{T}(t) = 9 X''(x)T(t)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\ddot{T}(t)}{T(t)} = \frac{9 X''(x)}{X(x)} = -b^2}
Először oldjuk meg x-re: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{9 X''(x)}{X(x)} = -b^2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 9 \lambda^2 = -b^2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = \pm i \frac{b}{3}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(x) = c_1 \cos{\frac{b}{3}x} + c_2 \sin{\frac{b}{3}x}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X'(x) = -c_1\frac{b}{3} \sin{\frac{b}{3}x} + c_2\frac{b}{3} \cos{\frac{b}{3}x}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X'(0) = c_2\frac{b}{3} = 0}
A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b = 0} -hoz tartozó Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(x) = 0} megoldás nem érdekel minket, tehát Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c_2 = 0} .
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X'(5) = -c_1\frac{b}{3} \sin{\frac{b}{3}5} = 0}
Az X azonosan nulla megoldás megint nem érdekel minket, így:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{5}{3}b = k\pi}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b = \frac{3}{5}k\pi}
Most oldjuk meg a T-re vonatkozó diff-egyenletet
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\dot{T}(t)}{T(t)} = -( \frac{3}{5}k\pi)^2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = -( \frac{3}{5}k\pi)^2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T_k(t) = d_k e^{-( \frac{3}{5}k\pi)^2 t}}
Írjuk fel Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_k(x, t)} -t!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_k(x, t) = D_k \cos{\frac{1}{5}k\pi x} \cdot e^{-( \frac{3}{5}k\pi)^2 t} }
Majd pedig az ebből generált sort:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, t) = \sum_{k=0}^\infty D_k \cos{\frac{1}{5}k\pi x} \cdot e^{-( \frac{3}{5}k\pi)^2 t} }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, 0) = \sum_{k=0}^\infty D_k \cos{\frac{1}{5}k\pi x} = 12\cos\frac{3\pi}{5}x}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_3 = 12} , minden más Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_i} pedig nulla.
Vagyis:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U(x, t) = 12 \cos{\frac{3}{5}\pi x} \cdot e^{-( \frac{9}{5}\pi)^2 t}} .Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h=\frac{1}{2}} felosztás mellett adjuk meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{1,2}} értékét, ha
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0}
- Írjuk fel a diffegyenletet véges differenciákkal:
- Írjuk fel a differál-egyenletet differa-egyenlet formában!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle lim_{\Delta \to 0}\frac{\frac{u(x+\Delta, y) - u(x, y)}{\Delta} - \frac{u(x, y) - u(x-\Delta, y)}{\Delta}}{\Delta} = lim_{\Delta \to 0}\frac{\frac{u(x, y+\Delta) - u(x, y)}{\Delta} - \frac{u(x, y) - u(x, y-\Delta)}{\Delta}}{\Delta}}
- Közös nevezőre hozva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle lim_{\Delta \to 0}\frac{u(x+\Delta, y) - 2u(x, y) + u(x-\Delta, y)}{\Delta^2} = lim_{\Delta \to 0}\frac{u(x, y+\Delta) - 2u(x, y) + u(x, y-\Delta)}{\Delta^2}}
- Na most felejtsük, hogy delta nullához tart, és válasszunk ki egy megfelelően kicsi értéket vízszintes (h) és függőleges (k) irányban. A folytonos függvény helyett pedig használjuk egy ilyen lépésközönként mintavételezett diszkrét függvényt, ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{i,j}} jeletése Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(i \cdot h, j \cdot h)} .
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2}}
- Válasszuk meg a feladatban adott h értékhez a k értékét, hogy az egyenletből a lehető legtöbb tag kiessen (jelen esetben a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h = k = \frac{1}{2}} választás célszerű).
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{i+1,j} - 2u_{i,j} + u_{i-1,j} = u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}
- Fejezzük ki Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{i,j+1}} -et az egyenletből.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{i,j+1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1}}
- Ennek a képletnek a rekurzív alkalmazásával el tudunk jutni a peremfeltételtől az u_{1,2} értékig.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{1,2} = u_{2,1} + u_{0, 1} - u_{1, 0}}
- Innen az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{0, 1}} és a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{1, 0}} ismert a peremfeltétel alapján, de az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{2,1}} -ért még számolnunk kell.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{2,1} = u_{3,0} + u_{1, 0} - u_{2, -1}}
- Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{2, -1}} -hez a nullában vett t szerinti deriváltra vonatkozó feltételt kell használni:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{u_{2, 0} - u_{2, -1}}{k} = 0}
- Vagyis:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{2, -1} = u_{2, 0}}
- A kért pont tehát kiszámolható az alábbi peremen található értékekből (papíron egyszerűbb felvenni egy négyzetrácsot az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{i,j}} értékeknek, és mindenhova odaírni az adott értéket):
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x \in [0, 5], t \geq 0} , az x irányú távolság, h = 1. Mennyi lesz Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(2, \frac{1}{18})} ?
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial u}{\partial t} = 9\frac{\partial^2 u}{\partial x^2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{u_{i,j+1} - u_{i,j}}{k} = 9 \frac{u_{i+1,j} - 2 u_{i,j} + u_{i-1,j}}{h^2}}
Az egyszerű számolás miatt legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle k = \frac{h^2}{18} = \frac{1}{18}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 18(u_{i,j+1} - u_{i,j}) = 9 (u_{i+1,j} - 2 u_{i,j} + u_{i-1,j})}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 u_{i,j+1} = u_{i+1,j} + u_{i-1,j}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_{i,j+1} = \frac{u_{i+1,j} + u_{i-1,j}}{2}}
Ez alapján a keresett érték:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(2, \frac{1}{18}) = \frac{u(1, 0) + u(3, 0)}{2} = 6 (\cos\frac{3\pi}{5} + \cos\frac{9\pi}{5})}Jordan normál-forma
1) [2016ZH2] Adjuk meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = Bx + b} egyenlet megoldását, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B = \frac{1}{6}\begin{bmatrix}3 & 1 & -2 \\ 0 & 4 & -2 \\ 0 & 1 & 1\end{bmatrix},~ b = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}.}
- Először meg kell határozni B sajátértékeit. Ezt a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle det\left(B - \lambda I\right) = 0} egyenlet megoldásaiként kapjuk meg. Most az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{6}} -os szorzó miatt inkább számoljuk azzal, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 6 \cdot det\left(B - \lambda I\right) = det\left(6B - 6\lambda I\right) = det\left(6B - \lambda' I\right) = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{vmatrix}3 - \lambda' & 1 & -2 \\ 0 & 4 - \lambda' & -2 \\ 0 & 1 & 1 - \lambda'\end{vmatrix} = 0}
- Fejtsük ki a determinánst az első oszlop szerint:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (3 - \lambda')((4 - \lambda')(1 - \lambda') + 2) = (3 - \lambda')(\lambda'^2 - 5\lambda + 6) = (3 - \lambda')(\lambda' - 3)(\lambda' - 2) = - (\lambda' - 3)^2(\lambda' - 2)}
- Most határozzunk meg minden sajátértékhez egy sajátvektort (itt az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{6}} -os szorzó nem számít, a sajátvektor csak konstans szorzó erejéig egyértelmű)
- Először a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda' = 3} -hoz keresünk két sajátvektort:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}3 - 3 & 1 & -2 \\ 0 & 4 - 3 & -2 \\ 0 & 1 & 1 - 3\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \underline{0}}
- Mindhárom egyenletünk megegyezünk, az y legyen mondjuk 1, ekkor a z-nek -2-nek kell lennie, az x tetszőleges. Az x=0 és az x=1 két lineáris független sajátvektort ad.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s_{-3, 1} = \begin{bmatrix}0 \\ 1 \\ -2\end{bmatrix},~s_{-3, 2} = \begin{bmatrix}1 \\ 1 \\ -2\end{bmatrix}}
- Határozzuk meg a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda' = 2} -höz tartozó sajátvektort is:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}3 - 2 & 1 & -2 \\ 0 & 4 - 2 & -2 \\ 0 & 1 & 1 - 2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 & 1 & -2 \\ 0 & 2 & -2 \\ 0 & 1 & -1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \underline{0}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = z, ~x = -y+2z = z}
- Tehát egy sajátvektor például:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s_{-2} = \begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}}
- A Jordan-normál forma (sajátértékek főátalóban, itt már számít a skalár szorzó) és a transzformációs mátrix (sajátvektorok alkotta mátrix):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle J = \begin{bmatrix} \frac{3}{6} & 0 & 0 \\ 0 & \frac{3}{6} & 0 \\ 0 & 0 & \frac{2}{6}\end{bmatrix},~T = \begin{bmatrix} s_{-3, 1} & s_{-3, 2} & s_{-2}\end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & 1\end{bmatrix}}
- A végeredményt az alábbi alakban kapjuk majd meg: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u = T (\sum_{k=0}^\infty J^k) T^{-1} b} . Ehhez viszont először invertálni kell T-t.
- Gauss-elimináljunk!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ -2 & -2 & 1 & | & 0 & 0 & 1\end{bmatrix} =_{s_3 += 2 \cdot s_2} \begin{bmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 3 & | & 0 & 2 & 1\end{bmatrix} =_{s_1 -= \cdot s_2} \begin{bmatrix} -1 & 0 & 0 & | & 1 & -1 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 3 & | & 0 & 2 & 1\end{bmatrix} =_{s_2 += \cdot s_1 - s_3 / 3} \begin{bmatrix} -1 & 0 & 0 & | & 1 & -1 & 0 \\ 0 & 1 & 0 & | & 1 & -\frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 3 & | & 0 & 2 & 1\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & -1 & 1 & 0 \\ 0 & 1 & 0 & | & 1 & -\frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & | & 0 & \frac{2}{3} & \frac{1}{3}\end{bmatrix}}
- Számoljuk ki Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sum_{k=0}^\infty J^k} -t!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sum_{k=0}^\infty J^k = \begin{bmatrix} \sum_{k=0}^\infty(\frac{1}{2})^k & 0 & 0 \\ 0 & \sum_{k=0}^\infty(\frac{1}{2})^k & 0 \\ 0 & 0 & \sum_{k=0}^\infty(\frac{1}{3})^k\end{bmatrix} = \begin{bmatrix} \frac{1}{1 - \frac{1}{2}} & 0 & 0 \\ 0 & \frac{1}{1 - \frac{1}{2}} & 0 \\ 0 & 0 & \frac{1}{1 - \frac{1}{3}}\end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{3}{2}\end{bmatrix}}
- A végeredmény tehát (a mátrix szorzásokat már nem kell elvégezni):
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sqrt{1 + coshx} - 2 = x} egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
a) A húrmódszer konvergens ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |I| \frac{|f''|}{2|f'|} < 1} a tartomány összes pontján.
Ez megadja, hogy max mekkora lehet az intervallum hossza, hogy az algoritmus konvergáljon. Gyakorlatban azt szoktuk vizsgálni, hogy a számláló maximuma és a nevező minimuma esetén is teljesül-e a feltétel, ami egy szűkebb feltétel, de becslésnek jó.
Számoljuk ki a deriváltakat!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |f'| = \left|(\sqrt{1 + coshx} - 2 - x)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}} - 1\right|}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |f''| = \left|\frac{coshx}{2(1 + coshx)^\frac{1}{2}} - \frac{sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right| = \left|\frac{coshx(1 + coshx) - 2 \cdot sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right| = \left|\frac{coshx - sinh^2x + (cosh^2x - sinh^2x)}{4(1 + coshx)^\frac{3}{2}}\right| \left|\frac{coshx - sinh^2x + 1}{4(1 + coshx)^\frac{3}{2}}\right|}
Nézzük meg ezeknek a minimumát és maximumát (csak a tartomány szélei érdekesek, nincs lokális minimuma, tehát az x helyére mindenhova négyet vagy ötöt írunk)
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle min_I|f'| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}} - 1\right|}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle max_I|f''| \leq \left|\frac{cosh4 - sinh^25 + 1}{4(1 + cosh4)^\frac{3}{2}}\right|}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I < \frac{2 \cdot min_I|f'|}{max_I|f''|} = \left| \frac{\frac{sinh4}{\sqrt{1 + cosh5}} - 2}{\frac{cosh4 - sinh^25 + 1}{4(1 + cosh4)^\frac{3}{2}}} \right|}
b) Az iteráció konvergens ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |g(x)'| < 1 } a tartomány összes pontján.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |g'(x)| = \left|(\sqrt{1 + coshx} - 2)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}}\right|}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle min_I|g'(x)| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}}\right| = \frac{e^4 - e^{-4}}{2 \sqrt{1 + e^5 + e^{-5}}} \approx \frac{e^{1.5}}{2} \geq 1}
Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens.2) [2016ZH2] Tekintsük az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle e^x - 2 = x} egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
- Iteráció: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |g'(x)| = e^x > 1} , az [1, 2] intervallum összes pontján. Ebből következik, hogy az iteráció bármely részintervallumon divergens lesz, tehát nem használható.
- Húrmódszer:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |I| \frac{max_I|f''|}{2 min_I|f'|} = |I| \frac{e^2}{2(e^1 - 1)} < 1}
Vagyis az algoritmus konvergens, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |I| < 2\frac{e-1}{e^2} = 2(e^{-1} - e^{-2})}3) [2016PZH] Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle arsh 2x = x} egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{|I|}{2^k}}
A iteráció esetében a pontosság Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |g'(x)|} -el szorzódik meg minden iteráció után. Ha ez kisebb, mint Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{2}} , akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |g'(x)| = \frac{2}{\sqrt{1 + (2x)^2}}}
Az [1,2] tartományon ennek a maximuma Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{2}{\sqrt{3}}} ami nagyobb, mint 1, ezért itt az iteráció még csak nem is konvergens. A [2, 3] tartományon a maximum Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{2}{\sqrt{17}} \approx 0.485} , tehát itt az iteráció gyorsabban konvergál.4) [2016V1] Newton (érintő) módszerrel keressük a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x) = 0}
egyenlet megoldását. Adjuk meg Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_{k+1}}
-et Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_k}
és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f}
segítségével!
Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x) = e^x - 1,~x\in[-a, a]}
. Adjuk meg Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a}
-t úgy, hogy a módszer konvergáljon!
Mi a konvergencia sebessége?
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}}
A konvergencia feltétele: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |I| \left| \frac{f(x)f''(x)}{f'(x)^2} \right| < 1} a tartomány összes pontján, illetve ezt közelíthetjük a számláló maximumával és nevező minimumával:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2a \left| \frac{\max_I ((e^x - 1) e^x)}{\min_I (e^x)^2} \right| = 2a \frac{(e^a - 1) e^a}{\left(e^{-a}\right)^2} = 2a (e^a - 1) e^{3a} < 1}
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x, y, z) = xy^2z^3(x,y,z > 0)} szélsőértékét az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle g(x, y, z) = x + 2y + 3z - 6 = 0} feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
- Vezessük be az alábbi függvényt:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F = f - \lambda g}
- A szélsőérték akkor létezhet, ha az összes változó szerinti derviált nulla:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial x} = y^2z^3 - \lambda = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial y} = 2xyz^3 - 2\lambda = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial z} = 3xy^2z^2 - 3\lambda = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial \lambda} = g = x + 2y + 3z - 6 = 0}
Az első egyenlet 2x szeresét a második egyenlet y szorosával egyenlővé téve:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2xy^2z^3 - 2 \lambda x = 2xy^2z^3 - 2\lambda y}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda x = \lambda y}
Azaz Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = 0} vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = y}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = 0} eset: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = y = z = \lambda = 0} (ellentmondás: x, y, z pozitív a feladat szerint)
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = y} eset:
Az második egyenlet 3y szeresét a harmadik egyenlet 2z szeresét egyenlővé téve: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 6x^3z^3 - 6\lambda x = 6x^3z^3 - 6\lambda z}
Vagyis (ismerve, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda \neq 0} ): Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = y = z = \lambda = 1}
A definitséghez szükség van ebben a pontban a feltétel gradiensére: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle grad(g) = \begin{bmatrix}1 & 2 & 3\end{bmatrix}}
Illetve a gradiensre merőleges vektorok alakjára (skalárszorzat alapján: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle <\begin{bmatrix}1 & 2 & 3\end{bmatrix}, \begin{bmatrix}x & y & z\end{bmatrix}> = 0} )
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}3x & 3y & -x-2y\end{bmatrix}}
Ezen kívül még az F Hesse mátrixa is kelle fog ebben a pontban: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left. \begin{bmatrix}{F_{xx}}'' & {F_{xy}}'' & {F_{xz}}'' \\ {F_{yx}}'' & {F_{yy}}'' & {F_{yz}}'' \\ {F_{zx}}'' & {F_{zy}}'' & {F_{zz}}''\end{bmatrix} \right|_{x=1,y=1,z=1} = \left. \begin{bmatrix}0 & 2yz^3 & 3y^2z^2 \\ 2yz^3 & 2xz^3 & 6xyz^2 \\ 3y^2z^2 & 6xyz^2 & 6xy^2z \end{bmatrix}\right|_{x=1,y=1,z=1} = \begin{bmatrix}0 & 2 & 3 \\ 2 & 2 & 6 \\ 3 & 6 & 6 \end{bmatrix}}
A definitséghez szorozzuk meg a Hesse mátrixot a gradiensre merőleges vektorokkal mindkét oldalról: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}3x & 3y & -x-2y\end{bmatrix} \begin{bmatrix}0 & 2 & 3 \\ 2 & 2 & 6 \\ 3 & 6 & 6 \end{bmatrix} \begin{bmatrix}3x \\ 3y \\ -x-2y\end{bmatrix} = \begin{bmatrix}-3x & -6y & 3x + 6y\end{bmatrix} \begin{bmatrix}3x \\ 3y \\ -x-2y\end{bmatrix} = -9x - 18y^2 -3x^2 -6xy -6xy -12y^2 = -12x^2 -12xy - 30y^2 = -6 (x^2 + xy + 5y^2) }
Ennek az előjele lehet pozitív és negatív is x és y értékétől függően, vagyis a mátrix indefinit, azaz itt nincs szélsőérték.
(Ha mindig pozitív lett volna, az minimum helyet jelölt volna, ha mindig negatív akkor maximum, ha mindig nulla, akkor pedig nyereg pont.)2) [2016ZH2] Hol lehet feltételes szélsőértéke a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 3x^2 + y^2 + z^2 - xy} függvénynek az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x^2 + y^2 + z^2 = 1} feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F = 3x^2 + y^2 + z^2 - xy - \lambda(x^2 + y^2 + z^2 - 1)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial x} = 6x - y - 2\lambda x = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial y} = 2y - x - 2\lambda y = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial z} = 2z - 2\lambda z = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0}
A harmadik egyenletből: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (1 - \lambda)z = 0}
Azaz Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = 1} vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z = 0}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = 1} eset: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = y = 0} , Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z = \lambda = 1}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z = 0} eset:
Az első egyenletből: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = (6-2\lambda)x}
Az második egyenletből egyenletből:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2(6-2\lambda)x - x - 2\lambda (6-2\lambda)x = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (4 \lambda^2 - 16\lambda + 11)x = 0} (x = 0: ellentmondás)
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 4 \lambda^2 - 16\lambda + 11 = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda_{1,2} = \frac{16 \pm \sqrt{80}}{8} = \frac{4 \pm \sqrt{5}}{2}}
A negyedik egyenlet alapján: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x^2 + (2 \pm \sqrt{5})^2 x^2 = 1}
Vagyis a megoldások (4 db):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = \pm \sqrt{\frac{1}{1 + (2 \pm \sqrt{5})^2}}, ~y= \pm(2 \pm \sqrt{5}) \sqrt{\frac{1}{1 + (2 \pm \sqrt{5})^2}},~z=0, \lambda = \frac{4 \pm \sqrt{5}}{2}}3) [2016PZH] Hol lehet feltételes szélsőértéke a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x^2 + y^2 + z^2 - 2xy -2xz} függvénynek az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x^2 + y^2 + z^2 = 1} feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F = x^2 + y^2 + z^2 - 2xy -2xz - \lambda (x^2 + y^2 + z^2 - 1)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial x} = 2x - 2y -2z -2 \lambda x = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial y} = 2y - 2x - 2 \lambda y = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial y} = 2z - 2x - 2 \lambda z = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial F}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0}
Vonjuk ki a második egyenletből a harmadikat:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (1 - \lambda)(y - z) = 0}
Azaz Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = 1} vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = z}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = 1}
A második és harmadik egyenlet is azt adja, hogy: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = 0}
Az első egyenlet alapján: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = -z}
Tehát a két megoldás (a negyedik egyenlet alapján): Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (0, \pm\sqrt{2}, \mp\sqrt{2}, 1)}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = z} eset
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (1 - \lambda) x - 2y = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (1 - \lambda) y - x = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x^2 + 2y^2 = 1}
A második egyenletből: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = (1 -\lambda) y}
Az első egyenletbe írva: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (1 - \lambda)^2 y - 2y = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -(\lambda^2 + 1)y = 0}
Azaz Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = z = x = 0} , ellentmondás.
A szélsőértékek jellege:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle grad(g) = (2x, 2y, 2z)}
Az adott pontokban: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle grad(g) = (0, \pm 2 \sqrt{2}, \mp 2 \sqrt{2})}
Az erre merőleges vektorok: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (x, y, y)}
A Hesse mátrix: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left. \begin{bmatrix}{F_{xx}}'' & {F_{xy}}'' & {F_{xz}}'' \\ {F_{yx}}'' & {F_{yy}}'' & {F_{yz}}'' \\ {F_{zx}}'' & {F_{zy}}'' & {F_{zz}}''\end{bmatrix} \right|_{x=0,y=\pm\sqrt{2},z=\mp\sqrt{2},\lambda=1} = \left. \begin{bmatrix}2 - 2\lambda & 2 & 2 \\ 2 & 2 - 2\lambda & 0 \\ 2 & 0 & 2 - 2\lambda \end{bmatrix}\right|_{x=0,y=\pm\sqrt{2},z=\mp\sqrt{2},\lambda=1} = \begin{bmatrix}0 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}}
A definitség: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}x & y & y\end{bmatrix} \begin{bmatrix}0 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix}x \\ y \\ y\end{bmatrix} = \begin{bmatrix}4y & 2x & 2x\end{bmatrix} \begin{bmatrix}x \\ y \\ y\end{bmatrix} = 16xy}
Ez indefinit, itt nincs szélsőérték.Variáció számítás
1) [2015ZH2] Keressük meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I(y)} funkcionálhoz tartozó extremális y függvényt!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I(y) = \int_{-1}^{2}y'^2 + x^3 - 2xydx}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}}
Ez a feladattípus arról szól, hogy használjuk az Euler-Lagrange (EL) egyenletet: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0}
- Vegyük észre, hogy két különböző deriváltjel szerepel a képletben, és ezek mást jelentenek.
- A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial}{\partial x}}
azt jelenti, hogy csak az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x}
-et közvetlenül tartalmazó tagokat deriváljuk, de az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x}
-től függő Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(x)}
függvényt már konstansnak (független változónak) tekintjük a deriválás szempontjából.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial x}{\partial x} = 1,~\frac{\partial y(x)}{\partial x} = 0,~\frac{\partial y'(x)}{\partial x} = 0}
- A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{d}{d x}}
esetében mindent deriválunk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x}
szerint, ami függ Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x}
-től.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{d x}{d x} = 1,~\frac{d y(x)}{d x} = y'(x),~\frac{d y'(x)}{d x} = y''(x)}
Az f függvény, amire alkalmazni kell az EL-t, az az integrál belseje: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x, y, y') = y'^2 + x^3 - 2xy} . Ha lenne feltétel is, akkor ugyanúgy be kéne vezetni egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F = f - \lambda g} függvényt, és arra kéne megoldani az EL-t.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = -2x - \frac{d}{d x}2y' = -2x - 2y'' = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y''(x) = -x}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'(x) = -\frac{x^2}{2} + c}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(x) = -\frac{x^3}{6} + cx + d}
A kezdeti felételeket felhasználva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(-1) = \frac{1}{6} - c + d = \frac{1}{6}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c = d}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(2) = -\frac{8}{6} + 2c + d = -\frac{4}{3} + 3c = \frac{5}{3}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 3c = \frac{9}{3} = 3}
Tehát Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c = 1,~d = 1} , azaz a megoldás:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(x) = -\frac{x^3}{6} + x + 1} .2) [2015ZH2] Keressük meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I(y)} funkcionálhoz tartozó extremális y függvényt!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I(y) = \int_{-1}^{2}y'^3 + x^3 - 2xydx}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = -2x - \frac{d}{d x}3y'^2 = -2x - 6y'y'' = 0}
Vezessünk be egy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p = y' = \frac{dy}{dx}, ~p' = y'' = \frac{dp}{dx}} változót, és erre oldjuk meg a differenciálegyenletet (ha az egyenletből az x hiányozna, akkor y szerinti deriválásra kéne áttérni).
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -x = 3 p \frac{dp}{dx}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 3 p~dp = -x~dx}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{3}{2} p^2 = -\frac{x^2}{2} + c}
Írjuk vissza az y'-t p helyére
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left(\frac{dy}{dx}\right)^2 = -\frac{x^2}{3} + c_2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle dy^2 = \left(-\frac{x^2}{3} + c_2\right)dx^2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle dy = \pm \left(\sqrt{\frac{1}{3}} \sqrt{-x^2 + c_3}\right) dx}
Ez egy sokkal nehezebb integrál, mint ami ZH-kon elő szokott fordulni.
Amúgy elvileg megoldható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = \sqrt{c_3} \sin u} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle dx = \sqrt{c_3} \cos u\,du} helyettesítéssel meg néhány trigonometrikus összefüggés felhasználásával, és ez lesz a eredménye:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = \pm \frac{1}{2\sqrt{3}} \left(x \sqrt{c_3 - x^2} + c_3 \arctan(\frac{x}{\sqrt{c_3 - x^2}}) \right) + d}
A két kezdeti feltételt felhasználva ki lehet számolni a két konstans értékét (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c_3, d} ). De analitikusan ez még a Mathematica-nak sem sikerült. Persze lehet próbálkozni numerikus módszerekkel :p
Valami nagyon el van b*va ezzel a feladattal.
https://s-media-cache-ak0.pinimg.com/236x/55/08/4b/55084be16a6b92e2cdb97951f371f4df.jpg3) [2016V1] Keressük meg az extremális függvényt az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I(y) = \int_0^1 y(2-y') dx,~y(0) = 1,~ y(1) = 2} operátorra vonatkozóan a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle J(y) = \int_0^1 y'^2 = \frac{13}{3}} feltétel mellett!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F = y(2-y') - \lambda y'^2}
Erre alkalmazzuk az Euler-Lagrange egyenletet:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2-y' - \frac{d}{dx}(-y - 2\lambda y') = 2-y' + y' + 2\lambda y'' = 2 + 2\lambda y'' = 0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'' = \frac{-1}{\lambda}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{dy'}{dx} = \frac{-1}{\lambda}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int dy' = \int \frac{-1}{\lambda} dx}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y' = \frac{-x}{\lambda} + c_1}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{dy}{dx} = \frac{-x}{\lambda} + c_1}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int dy = \int \frac{-x}{\lambda} + c_1 dx}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = \frac{-x^2}{2 \lambda} + c_1 x + c_2}
Használjuk fel a kezdeti feltételeket!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(0) = c_2 = 1}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(1) = \frac{-1}{2 \lambda} + c_1 + 1 = 2}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle c1 = 1 + \frac{1}{2 \lambda}}
A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda} -hoz ki kell számolni J(y)-t.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = \frac{-x^2}{2 \lambda} + x + \frac{x}{2 \lambda} + 1}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y' = \frac{-x}{\lambda} + 1 + \frac{1}{2 \lambda}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'^2 = \frac{x^2}{\lambda^2} - \frac{2x}{\lambda} + 1 - \frac{2x}{2\lambda^2} + \frac{2}{2\lambda} + \frac{1}{4 \lambda^2} = \frac{1}{\lambda^2} \left( x^2 - 2x\lambda + \lambda^2 - x + \lambda + \frac{1}{4} \right)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_0^1 y'^2 = \frac{1}{\lambda^2} \left[ \frac{x^3}{3} - \lambda x^2 + \lambda^2 x - \frac{x^2}{2} + \lambda x + \frac{x}{4} \right]_0^1 = \frac{1}{\lambda^2} \left( \frac{1}{3} - \lambda + \lambda^2 - \frac{1}{2} + \lambda + \frac{1}{4} \right) = 1 + \frac{1}{12\lambda^2} = \frac{13}{3}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda^2 = \frac{3}{120} = \frac{1}{40}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = \pm \frac{1}{\sqrt{40}}}
Visszaírva y-ba:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(x) = \mp \sqrt{10} x^2 + (1\pm\sqrt{10}) x + 1}