„Analízis (MSc) típusfeladatok” változatai közötti eltérés
(94 közbenső módosítás, amit 3 másik szerkesztő végzett, nincs mutatva) | |||
1. sor: | 1. sor: | ||
Az [[Analízis (MSc)]] tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni. | |||
= Integrál trafók témakör = | = Integrál trafók témakör = | ||
== Laplace trafó diff-egyenlet == | == Laplace trafó diff-egyenlet == | ||
<big>1)</big> <small>[2015ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha | |||
<math>\dot{x}(t) = 2y(t) - x(t) + 1</math> | <math>\dot{x}(t) = 2y(t) - x(t) + 1</math> | ||
11. sor: | 13. sor: | ||
<math>x(0) = 0,~y(0) = 1</math> | <math>x(0) = 0,~y(0) = 1</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
* Vegyük mindkét egyenlet Laplace trafóját (<math>X := | |szöveg= | ||
* Vegyük mindkét egyenlet Laplace trafóját (<math>X := \mathcal{L}(x),~ Y := \mathcal{L}(y)</math>): | |||
<math>sX - x(0) = 2Y - X + \frac{1}{s}</math> | <math>sX - x(0) = 2Y - X + \frac{1}{s}</math> | ||
38. sor: | 41. sor: | ||
* Együtthatókat összehasonlítva: | * Együtthatókat összehasonlítva: | ||
<math> A + B = 0, -A = 3, | <math> A + B = 0, -A = 3</math> | ||
* Ahonnan: | |||
<math> A = -3,~B = 3</math> | |||
* Vagyis <math>X(s) = \frac{-3}{s} + \frac{3}{s-1}</math> | * Vagyis <math>X(s) = \frac{-3}{s} + \frac{3}{s-1}</math> | ||
* Tehát a táblázat alapján <math>x(t) = -3 + 3e^t</math> | * Tehát a táblázat alapján <math>x(t) = -3 + 3e^t</math> | ||
}} | |||
< | <big>2)</big> <small>[2016ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha | ||
<math>\ddot{x}(t) = 2x(t) - 3y(t)</math> | <math>\ddot{x}(t) = 2x(t) - 3y(t)</math> | ||
53. sor: | 59. sor: | ||
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math> | <math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math> | ||
< | {{Rejtett | ||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Vegyük mindkét egyenlet Laplace trafóját: | |||
<math>s^2X - sx(0) - \dot{x}(0) = 2X - 3Y</math> | |||
<math>s^2Y - sy(0) - \dot{y}(0) = X - 2Y</math> | |||
* Átrendezve és mátrixos alakra hozva: | |||
<math>\begin{bmatrix}s^2-2 & 3 \\ -1 & s^2+2\end{bmatrix} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}0 \\ 1\end{bmatrix}</math> | |||
* Megoldás X-re: | |||
<math>X = \frac{det\left(\begin{bmatrix}0 & 3 \\ 1 & s^2+2\end{bmatrix}\right)}{det\left(\begin{bmatrix}s^2-2 & 3 \\ -1 & s^2+2\end{bmatrix}\right)} = \frac{-3}{(s^2-2)(s^2+2)+3} = \frac{-3}{s^4-1} = \frac{-3}{(s^2-1)(s^2+1)}</math> | |||
* Parc törtek: | |||
<math>\frac{A}{s^2-1} + \frac{B}{s^2+1} = \frac{(A+B)s^2 + (A-B)}{s^4-1} = \frac{-3}{s^4-1}</math> | |||
* Ahonnan: | |||
<math> A = -\frac{3}{2},~B = \frac{3}{2}</math> | |||
* Inverz Laplace után: <math>x(t) = -\frac{3}{2}sht + \frac{3}{2}sint</math> | |||
}} | |||
<big>3)</big> <small>[2016ZH1]</small> Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Számítsuk ki a tagok Laplace trafóját (x szerint): | |||
** <math>\mathcal{L}_x(y'') = s^2 Y - s y(0) - y'(0)</math> | |||
** <math>\mathcal{L}_x(xy') = \mathcal{L}_x(xf(x)) = -(\mathcal{L}_x(f(x)))' = -(\mathcal{L}_x(y'))' = -(s Y(s) - y(0))' = -(s' Y(s) + s Y'(s)) = -Y - sY' </math> | |||
** <math>\mathcal{L}_x(x) = \frac{1}{s^2}</math> | |||
* Tehát az egyenlet Laplace transzformáltja (elsőrendű Y-ban): | |||
<math> s^2 Y - s y(0) - y'(0) + -Y - sY' = \frac{1}{s^2}</math> | |||
}} | |||
== Laplace trafó szabályok alkalmazása == | == Laplace trafó szabályok alkalmazása == | ||
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket: | <big>1)</big> <small>[2016PZH]</small> Számítsuk ki az alábbi jobboldali határétrékeket: | ||
<math>\lim_{x \to 0+}f'(x) = ?, ~ \lim_{x \to 0+}f''(x) = ?, ha ~\mathcal{L}(f) = \frac{s^2-3s+1}{5s^4-4s^3+8}</math> | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Számoljuk ki <math>\mathcal{L}'(f)</math>-et! | |||
<math>\mathcal{L}'(f) = s\mathcal{L}(f) - \lim_{x \to 0+}f(x)</math> | |||
* Vegyük ennek az egyenletnek a végtelenben vett határértékét: | |||
** Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben: <math>lim_{s \to \infty}\mathcal{L}'(f)=0</math> | |||
** <math>lim_{s \to \infty}s\mathcal{L}(f) = lim_{s \to \infty}\frac{s(s^2-3s+1)}{5s^4-4s^3+8} = 0</math> | |||
* Tehát: | |||
<math>0 = 0 - f(0+)</math> | |||
* Amiből: | |||
<math>f(0+) = 0</math> | |||
* Csináljuk meg ugyanezt <math>\mathcal{L}''(f)</math>-re! | |||
<math>\mathcal{L}''(f) = s^2\mathcal{L}(f) - sf(0+) - f'(0+)</math> | |||
* Vagyis: | |||
<math>0 = \frac{1}{5} - 0 - f'(0+)</math> | |||
* Amiből: | |||
<math>f'(0+) = \frac{1}{5}</math> | |||
* Végül csináljuk meg ugyanezt <math>\mathcal{L}'''(f)</math>-re! | |||
<math>\mathcal{L}'''(f) = s^3\mathcal{L}(f) - s^2f(0+) - sf'(0+) - f''(0+)</math> | |||
* Itt a határérték picit bonyolultabb: | |||
<math>0 = lim_{s \to \infty}(\frac{s}{5} - 0 - \frac{s}{5} - f''(0+))</math> | |||
* Amiből: | |||
<math>lim_{s \to \infty}(f''(0+)) = f''(0+) = 0</math> | |||
}} | |||
<big>2)</big> <small>[2016V2]</small> Számítsuk ki az alábbi integrált: <math>\int_0^\infty \frac{\cos t-e^{-t}}{t} dt</math> | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
Laplace tulajdonságok miatt <math>\int_0^\infty \frac{f(t)}{t} dt = \int_0^\infty \mathcal{L}(f)(s) ds</math>. | |||
<math> | Jelen esetben <math>f(t) = \cos t - e^{-t}</math>, számoljuk ki az integrált: | ||
<math>\int_0^\infty \mathcal{L}(f) ds = \int_0^\infty \frac{s}{s^2+1} - \frac{1}{s+1} ds = \int_0^\infty \frac12 \frac{2s}{s^2+1} - \frac{1}{s+1} = </math> | |||
<math>\left[ \frac12 \ln|s^2+1| - \ln |s+1| \right]_0^\infty = \left[ \ln \sqrt{|s^2+1|} - \ln |s+1| \right]_0^\infty = \left[ \ln \frac{\sqrt{|s^2+1|}}{|s+1} \right]_0^\infty = \ln 1 - \ln 1 = 0</math> | |||
}} | |||
== Fourier diff-egyenlet == | == Fourier diff-egyenlet == | ||
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével! | <big>1)</big> <small>[2015ZH1]</small> Oldjuk meg Fourier transzformáció segítségével! | ||
<math>y'(x) - 4y(x) = 8</math> | <math>y'(x) - 4y(x) = 8</math> | ||
2) [2016ZH1] Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)! | {{Rejtett | ||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: <math>Y = \mathcal{F}(y)</math>)!: | |||
<math>isY - 4Y = 8\sqrt{2\pi}\delta(s)</math> | |||
* Átrendezve: | |||
<math>-i(s+4i)Y = 8\sqrt{2\pi}\delta(s)</math> | |||
* Aminek a disztribúció értelemben vett megoldás Y-ra: | |||
** Ha <math>s+4i \neq 0</math>, akkor leoszthatunk vele. | |||
** Ha <math>s+4i = 0</math>, akkor <math>0 \cdot Y(-4i) = 0</math>, vagyis <math>Y(-4i)</math> bármilyen konstans lehet, ezt jelöljük pl c-vel. | |||
<math>Y = c \cdot \delta(s+4i) + \frac{8\sqrt{2\pi}\delta(s)}{is-4}</math> | |||
* Az összeg jobboldali tagja egyszerűsíthető, ha kihasználjuk, hogy az egy disztribúció (a <math>\delta(s)</math> a nevezőben lévő s-be is nullát helyettesít): | |||
<math>\frac{8\sqrt{2\pi}\delta(s)}{is-4}(\varphi) = \delta(s)\frac{8\sqrt{2\pi}}{is-4}(\varphi) = \delta(s)(\frac{8\sqrt{2\pi}}{is-4}\varphi) = \frac{8\sqrt{2\pi}}{i0-4}\varphi(0) = -2\sqrt{2\pi}\delta(s)</math> | |||
* Vagyis: | |||
<math>Y = c \cdot \delta(s+4i) + -2\sqrt{2\pi}\delta(s)</math> | |||
* Aminek vegyük az inverz Fourier transzformáltját: | |||
** Megjegyzés: A táblázatban szerepel <math>\mathcal{F}(f(t)+a) = e^{ias}\mathcal{F}(f(t))</math>, de nekünk inverz trafó kell | |||
** <math>\mathcal{F}^{-1}(F(s) + a) = \mathcal{F}(F(s) + a)|_{t=-s} = e^{ia(-t)}(\mathcal{F}(F(s))|_{t=-s}) = e^{ia(-t)}\mathcal{F}^{-1}(F(s))</math> | |||
<math>y(t) = c e^{4t} - 2</math> | |||
}} | |||
<big>2)</big> <small>[2016ZH1]</small> Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Számítsuk ki az egyenlet tagjainak Fourier trafóját (x szerint): | |||
** <math>\mathcal{F}_x(y'') = i^2 s^2 \hat{y} = -s^2 \hat{y}</math> | |||
** <math>\mathcal{F}_x(xy') = \frac{\mathcal{F}_x(y')'}{-i} = i\mathcal{F}_x(y')' = i(is\hat{y})'= -(s\hat{y})' = -\hat{y} - s\hat{y}'</math> | |||
** <math>\mathcal{F}_x(x) = \sqrt{2\pi}i\delta'(s)</math> | |||
* Vagyis az egyenlet Fourier trafója (elsőrendű diff-egyenlet <math>\hat{y}</math>-ra): | |||
<math>-s^2 \hat{y} + -\hat{y} - s\hat{y}' = \sqrt{2\pi}i\delta'(s)</math> | |||
}} | |||
<big>3)</big> <small>[2016V1]</small> Fourier transzformáció segítségével határozzuk meg u(x, t)-t, ha | |||
<math>\frac{\partial^2 u}{\partial^2 x} + \frac{\partial^2 u}{\partial y^2} = 0</math> | |||
<math>u(x, 0) = 1,~x \in \mathcal{R},y \geq 0</math> | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
Egy u(x, y) függvény x szerinti Fourier trafójának a definíciója: | |||
<math> \hat{u}(s, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, y) e^{-ixs} dx </math> | |||
Vegyük az egyenlet x szerinti Fourier trafóját (a deriválás x-ben <math>i \cdot s</math>-el szorzás): | |||
<math> -s^2 \hat{u}(s,y) + \frac{\partial^2}{\partial y^2}\hat{u}(s, y) = 0</math> | |||
Oldjuk meg a diff-egyenletet y-ra (az y szerinti deriváltat jelölje a vessző): | |||
<math> \hat{u}_s''(y) - s^2 \hat{u}_s(y) = 0</math> | |||
<math> \lambda^2 = s^2 </math> | |||
<math> \hat{u}_s(y) = c_1(s) e^{|s|y} + c_2(s) e^{-|s|y}</math> | |||
Tudjuk, hogy ez a kifejezés <math>s \to \infty</math>-ben nullához tart, mert egy Fourier trafó: | |||
<math>lim_{s \to \infty}c_1(s) e^{|s|y} + c_2(s) e^{-|s|y} = 0</math> | |||
Ami, tekintve, hogy <math>y \geq 0</math>, csak akkor teljesülhet, ha <math>c_1(s) = 0</math>. | |||
Tehát: | |||
<math> \hat{u}_s(y) = c_2(s) e^{-|s|y}</math> | |||
A kezdeti feltétel Fourier trafója: | |||
<math> \hat{u}(0) = \sqrt{2 \pi} \delta (s)</math> | |||
A két egyenletet összevetve: | |||
<math>c_2(s) = \sqrt{2 \pi} \delta (s)</math> | |||
Vagyis: | |||
<math> \hat{u}(s, y) = \sqrt{2 \pi} \delta (s) e^{-|s|y}</math> | |||
<math>u(x, y)</math>-hoz vegyük ennek az x szerinti inverz Fourier trafóját: | |||
<math> \hat{u}(s, y) = \mathcal{F}(1) \cdot e^{-|s|y}</math> | |||
<math> u(x, y) = 1 * \mathcal{F}^{-1}(e^{-|s|y})</math> | |||
<math> \mathcal{F}^{-1}(e^{-|s|y}) = \sqrt{\frac{2}{\pi}}\frac{y}{x^2 + y^2}</math> | |||
<math> u(x, y) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} 1 \cdot \sqrt{\frac{2}{\pi}}\frac{y}{\xi^2 + y^2} d\xi</math> | |||
<math> u(x, y) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi^2 + y^2} d\xi</math> | |||
<math> u(x, y) = \frac{1}{y \pi} \int_{-\infty}^{\infty} \frac{1}{(\frac{\xi}{y})^2 + 1} d\xi</math> | |||
Vezessük be a <math>z = \frac{\xi}{y},~d\xi = y dz</math> változót: | |||
<math> u(x, y) = \frac{1}{y \pi} \int_{-\infty}^{\infty} \frac{1}{z^2 + 1} ydz</math> | |||
<math> u(x, y) = \frac{y}{y \pi} \left[arctg z \right]_{-\infty}^{\infty}</math> | |||
<math> u(x, y) = \frac{1}{\pi} \left( \frac{\pi}{2} - (-\frac{\pi}{2}) \right) = \frac{\pi}{\pi} = 1</math> | |||
}} | |||
== Fourier trafó szabályok alkalmazása == | == Fourier trafó szabályok alkalmazása == | ||
1) [2015ZH1] Számítsuk ki az <math>f(x) = 3xe^{-x}H(x)</math> Fourier transzformáltját, ha tudjuk, hogy <math>F(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}</math> | <big>1)</big> <small>[2015ZH1]</small> Számítsuk ki az <math>f(x) = 3xe^{-x}H(x)</math> Fourier transzformáltját, ha tudjuk, hogy <math>\mathcal{F}(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
Vezessük be a <math>g(x) = e^{-x}H(x)</math> jelölést! | |||
<math>\mathcal{F}(f(x)) = 3 \mathcal{F}(x \cdot g(x)) = 3 \cdot \frac{\mathcal{F}(g(x))'}{-i} = 3i \cdot (\frac{1}{\sqrt{2\pi}}\frac{1}{1+iy})' = 3i \cdot (-1) \cdot i \cdot \frac{1}{\sqrt{2\pi}}\frac{1}{(1+iy)^2} = 3 \cdot \frac{1}{\sqrt{2\pi}}\frac{1}{(1+iy)^2}</math> | |||
}} | |||
== Disztribúciók == | == Disztribúciók == | ||
1) [2015ZH1] Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót! | <big>1)</big> <small>[2015ZH1]</small> Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót! | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Nézzük meg, hogy egy <math>\varphi</math> függvényre hogyan viselkedik a feladatban szereplő disztribúció! | |||
<math>(e^{3x-2}\delta'(x))(\varphi) = \delta'(x)(e^{3x-2} \varphi) = -\delta(x)(e^{3x-2} \varphi)' = -\delta(x)(3 \cdot e^{3x-2} \varphi + e^{3x-2} \varphi') = -3e^{-2} \varphi(0) - e^{-2} \varphi'(0) = (-3e^{-2}\delta(x) + e^{-2}\delta'(x))(\varphi)</math> | |||
* Vagyis: | |||
<math>e^{3x-2}\delta'(x) = -3e^{-2}\delta(x) + e^{-2}\delta'(x)</math> | |||
}} | |||
<big>2)</big> <small>[2016ZH1]</small> Számítsuk ki a <math>T = e^{-x^2}</math> reguláris disztribúcuó és a <math>\delta'</math> disztribúció konvolúciójának hatását a <math>\psi(x) = x^2</math> függvényre: <math>(T * \delta')x^2 = ?</math> | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Elődáson volt, hogy <math>(T * \delta') = T'</math> | |||
** <math>(T * \delta')\varphi(x+y) = T_x (\delta'_y(\varphi(x+y))) = T_x(-\delta_y(\varphi'(x+y))) = T_x(-\varphi'(x)) = T_x'(\varphi(x))</math> | |||
* Ezt felasználva alkalmazzuk a <math>T'</math> disztribúciót a <math>\psi</math> függvényre: | |||
<math><(e^{-x^2})', (x^2)> = \int_{-\infty}^{\infty} (e^{-x^2})' (x^2) dx = [e^{-x^2}(x^2)]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-x^2} 2x = 0 - [e^{-x^2}]_{-\infty}^{\infty} = 0</math> | |||
}} | |||
<big>3)</big> <small>[2016ZH1]</small> Mi az <math>(x-3)f = 0</math> disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?) | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>f = c \cdot \delta(x-3)</math> | |||
* Ha <math>x-3 \neq 0</math>, akkor leoszthatunk vele, és azt kapjuk, hogy <math>f = 0,~ha~x-3 \neq 0</math>. | |||
* Ha <math>x-3 = 0</math>, akkor <math>0 \cdot f(3) = 0</math>, vagyis <math>f(3)</math> bármilyen konstans értéket felvehet, ezt jelöljük pl c-vel. | |||
* Tehát ha <math>x \neq 3</math>, akkor <math>f = 0</math>, ha <math>x = 3</math>, akkor tetszőleges <math>c</math> értékű, ez röviden: <math>f = c \cdot \delta(x-3)</math> | |||
}} | |||
<big>4)</big> <small>[2016ZH1]</small> Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>e^{3x}\delta''(x-2)(\varphi) = \delta''(x-2)(e^{3x}\varphi) = \delta(x-2)((e^{3x}\varphi)'') = \delta(x-2)((3e^{3x}\varphi + e^{3x}\varphi')') = </math> | |||
<math>= \delta(x-2)(9e^{3x}\varphi + 6e^{3x}\varphi' + e^{3x}\varphi'') = 9e^{6}\varphi(2) + 6e^{6}\varphi'(2) + e^{6}\varphi''(2) = (9e^{6}\delta(x-2) - 6e^{6}\delta'(x-2) + e^{6}\delta''(x-2))(\varphi)</math> | |||
}} | |||
<big>5)</big> <small>[2016PZH]</small> Legyen u az <math>f(x) = x - 3</math> által generált reguláris disztribúció, <math>\psi(x) = e^{-x^2}</math>. Számítsuk ki <math>(\sigma_2\tau_3\delta' * u)\psi</math>-t! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Először szabaduljunk meg a konvulúciótól: | |||
<math>(\sigma_2\tau_3\delta' * u) = (u * \sigma_2\tau_3\delta')\varphi(x+y) = u_x (\sigma_2\tau_3\delta'_y(\varphi(x+y))) = u_x(-\sigma_2\tau_3\delta_y(\varphi'(x+y))) = u_x(-\delta_y(\varphi'(2(x+y-3)))) = u_x(-\varphi'(2(x-3))) = u_x'(\sigma_2\tau_3(\varphi(x)))</math> | |||
* Az <math>u_x' = 1</math>, ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető): | |||
<math> u_x'(\sigma_2\tau_3(\varphi(x))) = <1, \sigma_2\tau_3\varphi(x)></math> | |||
* Majd értékeljük ki a disztribúciót a <math>\varphi = e^{-x^2}</math> függvényen: | |||
<math><1, \sigma_2\tau_3 e^{-x^2}> = \int_{-\infty}^{\infty} e^{-(2x-6)^2}dx = \int_{-\infty}^{\infty} e^{-u^2}\frac{1}{2}du = \frac{\sqrt{\pi}}{2}</math> | |||
}} | |||
{{Rejtett | |||
|mutatott=Zoli megoldása: | |||
|szöveg= | |||
<math>(u * \sigma_2 \tau_3 \delta')\varphi = (u * \delta' (2x-6))\varphi = u(x)(\delta'(2y-6) \varphi (x+y)) =</math> | |||
<math>= u(x) (-\frac{\delta(2y-6)}{4} \varphi'(x+y)) = u(x) \frac{-\varphi'(x+3)}{4} = u'(x) \frac{\varphi(x+3)}{4} = \frac{1}{4}\int_{-\infty}^{\infty} 1 \cdot e^{-(x+3)^2} dx = \frac{\sqrt{\pi}}{4}</math> | |||
}} | |||
== Wavelet trafók == | == Wavelet trafók == | ||
1) [2015ZH1] Legyen <math>\psi(x) = (1 - x^2)e^{-\ | Megjegyzés: a kitevőbe írt törtek (pl: <math>e^{-\frac{x^2}{2}}</math>) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni. | ||
<hr> | |||
<big>1)</big> <small>[2015ZH1]</small> Legyen <math>\psi(x) = (1 - x^2)e^{-x^2 / 2}</math>, a mexikói kalap wavelet. | |||
<big>a)</big> Legyen <math>f(x) = e^{-|x|}</math>. <math>\mathcal{F}(W_{\psi}f_a(b)) = ?</math> | |||
<big>b)</big> Legyen <math>g(x) = x^2</math>. Tudjuk, hogy <math>\int_{R}e^{-x^2 / 2}dx=\sqrt{2\pi}.~W_{\psi}g_a(b) = ?</math> | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<big>a)</big> A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül: <math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)}</math> | |||
<math>\hat{f}(y) = \sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}</math> | |||
<math>\hat{\psi}(y) = \mathcal{F}(e^{-x^2 / 2}) - \mathcal{F}(x^2 \cdot e^{-x^2 / 2}) = \mathcal{F}(e^{-x^2 / 2}) - \frac{\mathcal{F}(e^{-x^2 / 2})''}{(-i)^2} = \mathcal{F}(e^{-x^2 / 2}) + \mathcal{F}(e^{-x^2 / 2})''</math> | |||
A táblázatban nincs benne, de közismert, hogy <math>\mathcal{F}(e^{-x^2 / 2}) = e^{-y^2 / 2}</math> | |||
<math>\hat{\psi}(y) = e^{-y^2 / 2} + (e^{-y^2 / 2})'' = e^{-y^2 / 2} + (-y(e^{-y^2 / 2}))' = e^{-y^2 / 2} -e^{-y^2 / 2} + y^2(e^{-y^2 / 2}) = y^2(e^{-y^2 / 2})</math> | |||
2) [2016ZH1] A Poisson wavelet a következő: | A táblázatból kiolvasott képletbe behelyettesítve: | ||
<math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \left(\sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}\right) \cdot \left((ay)^2(e^{-(ay)^2 / 2})\right)</math> | |||
<hr> | |||
<big>b)</big> <math>W_{\psi}g_a(b) = <\psi_{a, b}, g> = \int_{-\infty}^{\infty} (1 - \frac{x-b}{a}^2)e^{-((x-b)/a)^2 / 2} x^2 dx</math> | |||
Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet: <math> u = \frac{x-b}{a},~x = au + b,~ dx = a \cdot du</math> | |||
<math>W_{\psi}g_a(b) = \int_{-\infty}^{\infty} (1 -u^2)e^{-u^2 / 2} (au + b)^2 a \cdot du</math> | |||
Használjuk ki, hogy korábban már kiszámoltuk, hogy <math>(e^{-u^2 / 2})'' = -(1 -u^2)e^{-u^2 / 2}</math> | |||
<math>W_{\psi}g_a(b) = -a \int_{-\infty}^{\infty}(e^{-u^2 / 2})'' (au + b)^2 du</math> | |||
Amit kétszer parciálisan integrálva meg is kapjuk az eredményt: | |||
<math>W_{\psi}g_a(b) = -a \left( \left[(e^{-u^2 / 2})' (au + b)^2\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty}(e^{-u^2 / 2})' 2a \cdot (au + b) du \right) = | |||
2a^2 \int_{-\infty}^{\infty}(e^{-u^2 / 2})' \cdot (au + b) du = 2a^2 \left( \left[e^{-u^2 / 2} (au + b) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty}e^{-u^2 / 2} \cdot a du \right) = -2a^3 \sqrt{2\pi}</math> | |||
}} | |||
<big>2)</big> <small>[2016ZH1]</small> A Poisson wavelet a következő: | |||
<math>\psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}</math> | <math>\psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}</math> | ||
a) Mutassuk meg, hogy <math>\psi(x) = -(\frac{x^n}{n!} e^{-x})'</math>, ha <math>x \geq 0</math> | <big>a)</big> Mutassuk meg, hogy <math>\psi(x) = -(\frac{x^n}{n!} e^{-x})'</math>, ha <math>x \geq 0</math> | ||
<big>b)</big> Mutassuk meg, hogy <math>\int_R \psi_n(x)dx = 0</math> | |||
<big>c)</big> <math>C_{\psi_n} = ?</math> | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<big>a)</big> <math>-(\frac{x^n}{n!} e^{-x})' = -n\frac{x^{n-1}}{n!} e^{-x} + \frac{x^n}{n!} e^{-x} = x\frac{x^{n-1}}{n!} e^{-x}-n\frac{x^{n-1}}{n!} e^{-x} = \frac{x-n}{n!} x^{n-1} e^{-x}</math> | |||
<big>b)</big> <math>\int_R \psi_n(x)dx = \int_0^\infty -(\frac{x^n}{n!} e^{-x})' dx = -\left[\frac{x^n}{n!} e^{-x}\right]_0^\infty = 0</math> | |||
<big>c)</big> <math>C_{\psi_n} = 2 \pi \int_{-\infty}^\infty \frac{\left| \hat{\psi} \right|^2}{|y|} dy</math> | |||
Először számoljuk ki a wavelet Fourier trafóját (felhasználom, hogy <math>\mathcal{F}(-f') = -iy\mathcal{F}(f),~\mathcal{F}(x^n f) = i^n \mathcal{F}(f)^{(n)}</math>): | |||
<math>\hat{\psi} = \mathcal{F}(-(\frac{x^n}{n!} e^{-x})' \cdot H(x)) = -\frac{iy}{n!} \mathcal{F}(x^n e^{-x}H(x)) = -\frac{iy}{n!} i^n \mathcal{F}(e^{-x}H(x))^{(n)} = -\frac{iy}{n!} i^n \left(\frac{1}{\sqrt{2\pi}} \frac{1}{1+iy}\right)^{(n)} =</math> | |||
<math>= -\frac{iy}{n!} i^n i^n (-1)(-2) \dots(-n) \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}} = -iy \frac{n!}{n!} (-1)^n (-1)^n \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}} = -iy \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}}</math> | |||
<math>C_{\psi_n} = 2 \pi \int_{-\infty}^\infty \frac{\left| \hat{\psi} \right|^2}{|y|} dy = 2 \pi \int_{-\infty}^\infty \frac{1}{2\pi} \frac{|y|^2}{|y|}\frac{1}{(1+y^2)^{n+1}} dy = \int_{0}^\infty \frac{2 y}{(1+y^2)^{n+1}} dy = -\frac{1}{n} \left[\frac{1}{(1+y^2)^n}\right]_0^\infty = -\frac{1}{n} (0 - 1) = \frac{1}{n}</math> | |||
}} | |||
<big>3)</big> <small>[2016PZH]</small> Legyen <math>\psi(x) = xe^{-|x|}, f(x) = e^{-x^2/2}</math>. Adjuk meg f <math> \psi</math> által generált wavelet transzformáltjának Fourier transzformáltját! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>\hat{f}(x) = e^{-y^2/2} </math> | |||
<math>\hat{\psi}(x) = \sqrt{\frac{2}{\pi}} (-2iy) \frac{1}{(1+y^2)^2} </math> | |||
<math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)} = \sqrt{|a|} \cdot \sqrt{2\pi} e^{-y^2/2} \cdot \sqrt{\frac{2}{\pi}} (-2iay) \frac{1}{(1+(ay)^2)^2}</math> | |||
}} | |||
= Numerikus módszerek témakör = | = Numerikus módszerek témakör = | ||
== Parcdiff egyenletek (Fourier) == | == Parcdiff egyenletek (Fourier) == | ||
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet! | <big>1)</big> <small>[2015ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet! | ||
<math>\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}</math> | <math>\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}</math> | ||
115. sor: | 435. sor: | ||
<math>u(0, t) = u(3, t) = 0,~u(x,0)=sin\frac{4\pi}{3}x,~\frac{\partial u}{\partial t}(x, 0) = 2\sin\frac{\pi}{3}x</math> | <math>u(0, t) = u(3, t) = 0,~u(x,0)=sin\frac{4\pi}{3}x,~\frac{\partial u}{\partial t}(x, 0) = 2\sin\frac{\pi}{3}x</math> | ||
2) | {{Rejtett | ||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Az <math>U(x, t)</math>-t keressük szorzat alakban: <math>U(x, t) = X(x)T(T)</math> | |||
* A diffegyenlet így átírva: <math>X(t)\ddot{T}(t) = 4 \cdot X''(x)T(T)</math> | |||
* Ez így már szeparálható: | |||
** Figyeljünk arra, hogy a deriváltak a számlálóban legyenek | |||
** A szeparálás utáni hányadosokról pedig tudjuk, hogy negatívak (innen jön a <math>-b^2</math>) | |||
<math>4 \cdot \frac{X''(x)}{X(x)} = \frac{\ddot{T}(t)}{T(T)} = -b^2</math> | |||
* Nézzük meg, hogy melyik változóra van feltételünk, aminek a jobb oldalán konstans szerepel. | |||
** Az első két féltétel átírva: <math>X(0)T(t) = X(3)T(t) = 0</math>, minden t-re, vagyis <math>X(0) = X(3) = 0</math> | |||
** Tehát az X-re van a T-től nem függő feltételünk, ezért először az X-re oldjuk meg a diffegyenletet! | |||
* Oldjuk meg a diff-egyenletet: | |||
<math>4 \cdot \frac{X''(x)}{X(x)} = -b^2</math> | |||
<math>4 \cdot X''(x) + b^2 \cdot X(x) = 0</math> | |||
* Írjuk fel a karakterisztikus függvényt! | |||
<math>4 \cdot \lambda^2 + b^2 = 0</math> | |||
<math>\lambda^2 = -\frac{b^2}{4}</math> | |||
<math>\lambda = \pm i \frac{b}{2}</math> | |||
* Vagyis a diff-egyenlet megoldása: | |||
<math>X(x) = c_1 \cos{\frac{b}{2}x} + c_2 \sin{\frac{b}{2}x}</math> | |||
* Vizsgáljuk meg a kezdeti feltételeket: | |||
<math>X(0) = c_1 \cos{0} + c_2 \sin{0} = c_1 = 0</math> | |||
<math>X(3) = c_2 \sin{\frac{b}{2}3} = 0</math> | |||
Ami csak olyan egész k értékekre teljesülhet, amikre: <math>\frac{b}{2}3 = k \pi,~b = \frac{2}{3} k \pi</math> | |||
* Most oldjuk meg a diff-egyenletet T(t)-re, de a b helyére az újonnan kapott képletet írjuk be. | |||
<math>\frac{\ddot{T}(t)}{T(t)} = -(\frac{2}{3} k \pi)^2</math> | |||
<math>\lambda^2 = -(\frac{2}{3} k \pi)^2</math> | |||
<math>\lambda = \pm \frac{2}{3} i k \pi</math> | |||
* A T-re vonatkozó (k-tól függő) diff-egynelet: | |||
<math>T_k(t) = a_k \cos{\frac{2}{3} k \pi t} + b_k \sin{\frac{2}{3} k \pi t}</math> | |||
* Az <math>U(x, t)</math>-re vonatkozó k-tól függő egyenlet tehát: | |||
<math>U_k(x, t) = c_2 \sin{\frac{k}{3} \pi x} (a_k \cos{\frac{2k}{3} \pi t} + b_k \sin{\frac{2k}{3} \pi t})</math> | |||
* Vezessük be az <math>A_k = c_2 \cdot a_k</math> és <math>B_k = c_2 \cdot b_k</math> konstansokat! | |||
<math>U_k(x, t) = A_k \sin{\frac{k}{3} \pi x} \cos{\frac{2k}{3} \pi t} + B_k \sin{\frac{k}{3} \pi x} \sin{\frac{2k}{3} \pi t}</math> | |||
* Az <math>U(x, t)</math> pedig felírható az <math>U_k(x, t)</math>-k összegeként az összes k-ra. | |||
<math>U(x, t) = \sum_0^\infty U_k(x, t)</math> | |||
* A maradék két feltétel segítségével számoljuk ki az <math>A_k</math> és <math>B_k</math> konstansok értékeit. | |||
<math>U(x,0)=\sum_0^\infty A_k \sin{\frac{k}{3} \pi x} \cos{0} + B_k \sin{\frac{k}{3} \pi x} \sin{0} = \sum_0^\infty A_k \sin{\frac{k}{3} \pi x} = sin\frac{4\pi}{3}x</math> | |||
Amiből az együtthatók összehasonlításával megkapjuk, hogy <math>A_4 = 1</math>, minden más <math>A_i = 0</math>, ha <math>i \neq 4</math> | |||
* A másik feltételhez ki kell számolni az <math>\frac{\partial U}{\partial t}(x, t)</math>-t. | |||
<math>\frac{\partial U}{\partial t}(x, t) = \sum_0^\infty A_k \sin{\frac{k}{3} \pi x} \sin{\frac{2k}{3} \pi t} (-\frac{2k}{3} \pi) + B_k \sin{\frac{k}{3} \pi x} \cos{\frac{2k}{3} \pi t} (\frac{2k}{3} \pi)</math> | |||
* A feltételbe beírva: | |||
<math>\frac{\partial U}{\partial t}(x, 0) = \sum_0^\infty A_k \sin{\frac{k}{3} \pi x} \sin{0} (-\frac{2k}{3} \pi) + B_k \sin{\frac{k}{3} \pi x} \cos{0} (\frac{2k}{3} \pi) = \sum_0^\infty B_k \sin{\frac{k}{3} \pi x} (\frac{2k}{3} \pi) = 2\sin\frac{\pi}{3}x</math> | |||
<math>\frac{\partial | Innen pedig: | ||
<math>B_1 (\frac{2}{3} \pi) = 2,~ B_1 = \frac{2}{(\frac{2}{3} \pi)} = \frac{3}{\pi}</math>, minden más <math>B_i</math> pedig nulla. | |||
Vagyis a megoldás: | |||
<math>U(x, t) = \sin{\frac{4}{3} \pi x} \cos{\frac{8}{3} \pi t} + \frac{3}{\pi} \sin{\frac{1}{3} \pi x} \sin{\frac{2}{3} \pi t}</math> | |||
}} | |||
<big>2)</big> <small>[2016ZH2]</small> Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet! | |||
<math>\frac{\partial u}{\partial t} = 9\frac{\partial^2 u}{\partial x^2}</math> | |||
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | <math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>X(x)\ddot{T}(t) = 9 X''(x)T(t)</math> | |||
<math>\frac{\ddot{T}(t)}{T(t)} = \frac{9 X''(x)}{X(x)} = -b^2</math> | |||
Először oldjuk meg x-re: | |||
<math>\frac{9 X''(x)}{X(x)} = -b^2</math> | |||
<math>9 \lambda^2 = -b^2</math> | |||
<math>\lambda = \pm i \frac{b}{3}</math> | |||
<math>X(x) = c_1 \cos{\frac{b}{3}x} + c_2 \sin{\frac{b}{3}x}</math> | |||
<math>X'(x) = -c_1\frac{b}{3} \sin{\frac{b}{3}x} + c_2\frac{b}{3} \cos{\frac{b}{3}x}</math> | |||
<math>X'(0) = c_2\frac{b}{3} = 0</math> | |||
A <math>b = 0</math>-hoz tartozó <math>X(x) = 0</math> megoldás nem érdekel minket, tehát <math>c_2 = 0</math>. | |||
<math>X'(5) = -c_1\frac{b}{3} \sin{\frac{b}{3}5} = 0</math> | |||
Az X azonosan nulla megoldás megint nem érdekel minket, így: | |||
<math>\frac{5}{3}b = k\pi</math> | |||
<math>b = \frac{3}{5}k\pi</math> | |||
Most oldjuk meg a T-re vonatkozó diff-egyenletet | |||
<math>\frac{\dot{T}(t)}{T(t)} = -( \frac{3}{5}k\pi)^2</math> | |||
<math>\lambda = -( \frac{3}{5}k\pi)^2</math> | |||
<math>T_k(t) = d_k e^{-( \frac{3}{5}k\pi)^2 t}</math> | |||
Írjuk fel <math>U_k(x, t)</math>-t! | |||
<math>U_k(x, t) = D_k \cos{\frac{1}{5}k\pi x} \cdot e^{-( \frac{3}{5}k\pi)^2 t} </math> | |||
Majd pedig az ebből generált sort: | |||
<math>U(x, t) = \sum_{k=0}^\infty D_k \cos{\frac{1}{5}k\pi x} \cdot e^{-( \frac{3}{5}k\pi)^2 t} </math> | |||
<math>U(x, 0) = \sum_{k=0}^\infty D_k \cos{\frac{1}{5}k\pi x} = 12\cos\frac{3\pi}{5}x</math> | |||
<math>A_3 = 12</math>, minden más <math>A_i</math> pedig nulla. | |||
Vagyis: | |||
<math>U(x, t) = 12 \cos{\frac{3}{5}\pi x} \cdot e^{-( \frac{9}{5}\pi)^2 t}</math>. | |||
}} | |||
== Parcdiff egyenletek (véges differenciák) == | == Parcdiff egyenletek (véges differenciák) == | ||
1) [2015ZH2] Véges differenciák segítségével, <math>h=\frac{1}{2}</math> felosztás mellett adjuk meg az <math>u_{1,2}</math> értékét, ha | <big>1)</big> <small>[2015ZH2]</small> Véges differenciák segítségével, <math>h=\frac{1}{2}</math> felosztás mellett adjuk meg az <math>u_{1,2}</math> értékét, ha | ||
<math>\frac{\partial^2 u}{\partial | <math>\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}</math> | ||
<math>u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0</math> | <math>u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Írjuk fel a diffegyenletet véges differenciákkal: | |||
{{Rejtett | |||
|mutatott=Magyarázat: | |||
|szöveg= | |||
* Írjuk fel a differál-egyenletet differa-egyenlet formában! | |||
<math>lim_{\Delta \to 0}\frac{\frac{u(x+\Delta, y) - u(x, y)}{\Delta} - \frac{u(x, y) - u(x-\Delta, y)}{\Delta}}{\Delta} = lim_{\Delta \to 0}\frac{\frac{u(x, y+\Delta) - u(x, y)}{\Delta} - \frac{u(x, y) - u(x, y-\Delta)}{\Delta}}{\Delta}</math> | |||
<math>\frac{\ | * Közös nevezőre hozva: | ||
<math>lim_{\Delta \to 0}\frac{u(x+\Delta, y) - 2u(x, y) + u(x-\Delta, y)}{\Delta^2} = lim_{\Delta \to 0}\frac{u(x, y+\Delta) - 2u(x, y) + u(x, y-\Delta)}{\Delta^2}</math> | |||
* Na most felejtsük, hogy delta nullához tart, és válasszunk ki egy megfelelően kicsi értéket vízszintes (h) és függőleges (k) irányban. A folytonos függvény helyett pedig használjuk egy ilyen lépésközönként mintavételezett diszkrét függvényt, ahol <math>u_{i,j}</math> jeletése <math>u(i \cdot h, j \cdot h)</math>. | |||
}} | |||
<math>\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2}</math> | |||
* Válasszuk meg a feladatban adott h értékhez a k értékét, hogy az egyenletből a lehető legtöbb tag kiessen (jelen esetben a <math>h = k = \frac{1}{2}</math> választás célszerű). | |||
<math>u_{i+1,j} - 2u_{i,j} + u_{i-1,j} = u_{i,j+1} - 2u_{i,j} + u_{i,j-1}</math> | |||
* Fejezzük ki <math>u_{i,j+1}</math>-et az egyenletből. | |||
<math>u_{i,j+1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1}</math> | |||
* Ennek a képletnek a rekurzív alkalmazásával el tudunk jutni a peremfeltételtől az u_{1,2} értékig. | |||
<math>u_{1,2} = u_{2,1} + u_{0, 1} - u_{1, 0}</math> | |||
* Innen az <math>u_{0, 1}</math> és a <math>u_{1, 0}</math> ismert a peremfeltétel alapján, de az <math>u_{2,1}</math>-ért még számolnunk kell. | |||
<math>u_{2,1} = u_{3,0} + u_{1, 0} - u_{2, -1}</math> | |||
* Az <math>u_{2, -1}</math>-hez a nullában vett t szerinti deriváltra vonatkozó feltételt kell használni: | |||
<math>\frac{u_{2, 0} - u_{2, -1}}{k} = 0</math> | |||
* Vagyis: | |||
<math>u_{2, -1} = u_{2, 0}</math> | |||
* A kért pont tehát kiszámolható az alábbi peremen található értékekből (papíron egyszerűbb felvenni egy négyzetrácsot az <math>u_{i,j}</math> értékeknek, és mindenhova odaírni az adott értéket): | |||
<math>u_{1,2} = (u_{3,0} + u_{1, 0} - u_{2, 0}) + u_{0, 1} - u_{1, 0} = (0 + 2 - 1) + 3 - 2 = 2</math> | |||
}} | |||
<big>2)</big> <small>[2016ZH2]</small> Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha <math>x \in [0, 5], t \geq 0</math>, az x irányú távolság, h = 1. Mennyi lesz <math> u(2, \frac{1}{18})</math>? | |||
<math>\frac{\partial u}{\partial t} = 9\frac{\partial^2 u}{\partial x^2}</math> | |||
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | <math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>\frac{u_{i,j+1} - u_{i,j}}{k} = 9 \frac{u_{i+1,j} - 2 u_{i,j} + u_{i-1,j}}{h^2}</math> | |||
Az egyszerű számolás miatt legyen <math>k = \frac{h^2}{18} = \frac{1}{18}</math> | |||
<math>18(u_{i,j+1} - u_{i,j}) = 9 (u_{i+1,j} - 2 u_{i,j} + u_{i-1,j})</math> | |||
<math>2 u_{i,j+1} = u_{i+1,j} + u_{i-1,j}</math> | |||
<math>u_{i,j+1} = \frac{u_{i+1,j} + u_{i-1,j}}{2}</math> | |||
Ez alapján a keresett érték: | |||
<math>u(2, \frac{1}{18}) = \frac{u(1, 0) + u(3, 0)}{2} = 6 (\cos\frac{3\pi}{5} + \cos\frac{9\pi}{5})</math> | |||
}} | |||
== Jordan normál-forma == | == Jordan normál-forma == | ||
1) [2016ZH2] Adjuk meg az <math>x = Bx + b</math> egyenlet megoldását, ha <math>B = \frac{1}{6}\begin{bmatrix}3 & 1 & -2 \\ 0 & 4 & -2 \\ 0 & 1 & 1\end{bmatrix},~ b = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}.</math> | <big>1)</big> <small>[2016ZH2]</small> Adjuk meg az <math>x = Bx + b</math> egyenlet megoldását, ha <math>B = \frac{1}{6}\begin{bmatrix}3 & 1 & -2 \\ 0 & 4 & -2 \\ 0 & 1 & 1\end{bmatrix},~ b = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}.</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Először meg kell határozni B sajátértékeit. Ezt a <math>det\left(B - \lambda I\right) = 0</math> egyenlet megoldásaiként kapjuk meg. Most az <math>\frac{1}{6}</math>-os szorzó miatt inkább számoljuk azzal, hogy <math>6 \cdot det\left(B - \lambda I\right) = det\left(6B - 6\lambda I\right) = det\left(6B - \lambda' I\right) = 0</math> | |||
<math>\begin{vmatrix}3 - \lambda' & 1 & -2 \\ 0 & 4 - \lambda' & -2 \\ 0 & 1 & 1 - \lambda'\end{vmatrix} = 0</math> | |||
* Fejtsük ki a determinánst az első oszlop szerint: | |||
<math>(3 - \lambda')((4 - \lambda')(1 - \lambda') + 2) = (3 - \lambda')(\lambda'^2 - 5\lambda + 6) = (3 - \lambda')(\lambda' - 3)(\lambda' - 2) = - (\lambda' - 3)^2(\lambda' - 2)</math> | |||
* Most határozzunk meg minden sajátértékhez egy sajátvektort (itt az <math>\frac{1}{6}</math>-os szorzó nem számít, a sajátvektor csak konstans szorzó erejéig egyértelmű) | |||
* Először a <math>\lambda' = 3</math>-hoz keresünk két sajátvektort: | |||
<math>\begin{bmatrix}3 - 3 & 1 & -2 \\ 0 & 4 - 3 & -2 \\ 0 & 1 & 1 - 3\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 1 & -2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \underline{0}</math> | |||
* Mindhárom egyenletünk megegyezünk, az y legyen mondjuk 1, ekkor a z-nek -2-nek kell lennie, az x tetszőleges. Az x=0 és az x=1 két lineáris független sajátvektort ad. | |||
<math>s_{-3, 1} = \begin{bmatrix}0 \\ 1 \\ -2\end{bmatrix},~s_{-3, 2} = \begin{bmatrix}1 \\ 1 \\ -2\end{bmatrix}</math> | |||
* Határozzuk meg a <math>\lambda' = 2</math>-höz tartozó sajátvektort is: | |||
<math>\begin{bmatrix}3 - 2 & 1 & -2 \\ 0 & 4 - 2 & -2 \\ 0 & 1 & 1 - 2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 & 1 & -2 \\ 0 & 2 & -2 \\ 0 & 1 & -1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \underline{0}</math> | |||
<math>y = z, ~x = -y+2z = z</math> | |||
* Tehát egy sajátvektor például: | |||
<math>s_{-2} = \begin{bmatrix}1 \\ 1 \\ 1\end{bmatrix}</math> | |||
* A Jordan-normál forma (sajátértékek főátalóban, itt már számít a skalár szorzó) és a transzformációs mátrix (sajátvektorok alkotta mátrix): | |||
<math>J = \begin{bmatrix} \frac{3}{6} & 0 & 0 \\ 0 & \frac{3}{6} & 0 \\ 0 & 0 & \frac{2}{6}\end{bmatrix},~T = \begin{bmatrix} s_{-3, 1} & s_{-3, 2} & s_{-2}\end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & 1\end{bmatrix}</math> | |||
* A végeredményt az alábbi alakban kapjuk majd meg: <math>u = T (\sum_{k=0}^\infty J^k) T^{-1} b</math>. Ehhez viszont először invertálni kell T-t. | |||
* Gauss-elimináljunk! | |||
<math> \begin{bmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ -2 & -2 & 1 & | & 0 & 0 & 1\end{bmatrix} =_{s_3 += 2 \cdot s_2} \begin{bmatrix} 0 & 1 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 3 & | & 0 & 2 & 1\end{bmatrix} =_{s_1 -= \cdot s_2} \begin{bmatrix} -1 & 0 & 0 & | & 1 & -1 & 0 \\ 1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 3 & | & 0 & 2 & 1\end{bmatrix} =_{s_2 += \cdot s_1 - s_3 / 3} \begin{bmatrix} -1 & 0 & 0 & | & 1 & -1 & 0 \\ 0 & 1 & 0 & | & 1 & -\frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 3 & | & 0 & 2 & 1\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & -1 & 1 & 0 \\ 0 & 1 & 0 & | & 1 & -\frac{2}{3} & -\frac{1}{3} \\ 0 & 0 & 1 & | & 0 & \frac{2}{3} & \frac{1}{3}\end{bmatrix}</math> | |||
* Számoljuk ki <math>\sum_{k=0}^\infty J^k</math>-t! | |||
<math>\sum_{k=0}^\infty J^k = \begin{bmatrix} \sum_{k=0}^\infty(\frac{1}{2})^k & 0 & 0 \\ 0 & \sum_{k=0}^\infty(\frac{1}{2})^k & 0 \\ 0 & 0 & \sum_{k=0}^\infty(\frac{1}{3})^k\end{bmatrix} = \begin{bmatrix} \frac{1}{1 - \frac{1}{2}} & 0 & 0 \\ 0 & \frac{1}{1 - \frac{1}{2}} & 0 \\ 0 & 0 & \frac{1}{1 - \frac{1}{3}}\end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{3}{2}\end{bmatrix}</math> | |||
* A végeredmény tehát (a mátrix szorzásokat már nem kell elvégezni): | |||
<math>u = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & 1\end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{3}{2}\end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\1 & -\frac{2}{3} & -\frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3}\end{bmatrix} \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}</math> | |||
}} | |||
== Nem lineáris egyenletek numerikus megoldása == | == Nem lineáris egyenletek numerikus megoldása == | ||
1) [2015ZH2] Keressük a <math>\sqrt{1 + coshx} - 2 = x</math> egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van. | <big>1)</big> <small>[2015ZH2]</small> Keressük a <math>\sqrt{1 + coshx} - 2 = x</math> egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van. | ||
<big>a)</big> A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon? | |||
<big>b)</big> Használható-e a [4, 5] intervallumon az iteráció? | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<big>a)</big> A húrmódszer konvergens ha <math>|I| \frac{|f''|}{2|f'|} < 1</math> a tartomány összes pontján. | |||
Ez megadja, hogy max mekkora lehet az intervallum hossza, hogy az algoritmus konvergáljon. Gyakorlatban azt szoktuk vizsgálni, hogy a számláló maximuma és a nevező minimuma esetén is teljesül-e a feltétel, ami egy szűkebb feltétel, de becslésnek jó. | |||
Számoljuk ki a deriváltakat! | |||
<math>|f'| = \left|(\sqrt{1 + coshx} - 2 - x)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}} - 1\right|</math> | |||
<math>|f''| = \left|\frac{coshx}{2(1 + coshx)^\frac{1}{2}} - \frac{sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right| = \left|\frac{coshx(1 + coshx) - 2 \cdot sinh^2x}{4(1 + coshx)^\frac{3}{2}}\right| = \left|\frac{coshx - sinh^2x + (cosh^2x - sinh^2x)}{4(1 + coshx)^\frac{3}{2}}\right| \left|\frac{coshx - sinh^2x + 1}{4(1 + coshx)^\frac{3}{2}}\right|</math> | |||
Nézzük meg ezeknek a minimumát és maximumát (csak a tartomány szélei érdekesek, nincs lokális minimuma, tehát az x helyére mindenhova négyet vagy ötöt írunk) | |||
<math>min_I|f'| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}} - 1\right|</math> | |||
<math>max_I|f''| \leq \left|\frac{cosh4 - sinh^25 + 1}{4(1 + cosh4)^\frac{3}{2}}\right|</math> | |||
<math>I < \frac{2 \cdot min_I|f'|}{max_I|f''|} = \left| \frac{\frac{sinh4}{\sqrt{1 + cosh5}} - 2}{\frac{cosh4 - sinh^25 + 1}{4(1 + cosh4)^\frac{3}{2}}} \right|</math> | |||
<big>b)</big> Az iteráció konvergens ha <math>|g(x)'| < 1 </math> a tartomány összes pontján. | |||
<math>|g'(x)| = \left|(\sqrt{1 + coshx} - 2)'\right| = \left|\frac{sinhx}{2\sqrt{1 + coshx}}\right|</math> | |||
<math>min_I|g'(x)| \geq \left|\frac{sinh4}{2\sqrt{1 + cosh5}}\right| = \frac{e^4 - e^{-4}}{2 \sqrt{1 + e^5 + e^{-5}}} \approx \frac{e^{1.5}}{2} \geq 1</math> | |||
Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens. | |||
}} | |||
<big>2)</big> <small>[2016ZH2]</small> Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Iteráció: <math>|g'(x)| = e^x > 1</math>, az [1, 2] intervallum összes pontján. Ebből következik, hogy az iteráció bármely részintervallumon divergens lesz, tehát nem használható. | |||
* Húrmódszer: | |||
<math>|I| \frac{max_I|f''|}{2 min_I|f'|} = |I| \frac{e^2}{2(e^1 - 1)} < 1</math> | |||
Vagyis az algoritmus konvergens, ha <math>|I| < 2\frac{e-1}{e^2} = 2(e^{-1} - e^{-2})</math> | |||
}} | |||
<big>3)</big> <small>[2016PZH]</small> Az <math>arsh 2x = x</math> egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n? | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága: <math>\frac{|I|}{2^k}</math> | |||
A iteráció esetében a pontosság <math>|g'(x)|</math>-el szorzódik meg minden iteráció után. Ha ez kisebb, mint <math>\frac{1}{2}</math>, akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés. | |||
<math>|g'(x)| = \frac{2}{\sqrt{1 + (2x)^2}}</math> | |||
Az [1,2] tartományon ennek a maximuma <math>\frac{2}{\sqrt{3}}</math> ami nagyobb, mint 1, ezért itt az iteráció még csak nem is konvergens. A [2, 3] tartományon a maximum <math>\frac{2}{\sqrt{17}} \approx 0.485</math>, tehát itt az iteráció gyorsabban konvergál. | |||
}} | |||
<big>4)</big> <small>[2016V1]</small> Newton (érintő) módszerrel keressük a <math>f(x) = 0</math> egyenlet megoldását. Adjuk meg <math>x_{k+1}</math>-et <math>x_k</math> és <math>f</math> segítségével!<br> | |||
Legyen <math>f(x) = e^x - 1,~x\in[-a, a]</math>. Adjuk meg <math>a</math>-t úgy, hogy a módszer konvergáljon!<br> | |||
Mi a konvergencia sebessége? | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}</math> | |||
A konvergencia feltétele: <math>|I| \left| \frac{f(x)f''(x)}{f'(x)^2} \right| < 1</math> a tartomány összes pontján, illetve ezt közelíthetjük a számláló maximumával és nevező minimumával: | |||
<math>2a \left| \frac{\max_I ((e^x - 1) e^x)}{\min_I (e^x)^2} \right| = 2a \frac{(e^a - 1) e^a}{\left(e^{-a}\right)^2} = 2a (e^a - 1) e^{3a} < 1</math> | |||
A konvergencia sebessége: <math>\epsilon_{k+1} \le \frac{|f''|}{2|f'|} \epsilon_k^2</math>, vagy egyszerűbb alakban: <math>d_k \le d_0^{2k}</math> | |||
}} | |||
== Lagrange multiplikátor módszer == | == Lagrange multiplikátor módszer == | ||
1) [2015ZH2] Keressük meg az <math>f(x, y, z) = xy^2z^3(x,y,z > 0)</math> szélsőértékét az <math>x + 2y + 3z = | <big>1)</big> <small>[2015ZH2]</small> Keressük meg az <math>f(x, y, z) = xy^2z^3(x,y,z > 0)</math> szélsőértékét az <math>g(x, y, z) = x + 2y + 3z - 6 = 0</math> feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban! | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
* Vezessük be az alábbi függvényt: | |||
<math>F = f - \lambda g</math> | |||
* A szélsőérték akkor létezhet, ha az összes változó szerinti derviált nulla: | |||
<math>\frac{\partial F}{\partial x} = y^2z^3 - \lambda = 0</math> | |||
<math>\frac{\partial F}{\partial y} = 2xyz^3 - 2\lambda = 0</math> | |||
<math>\frac{\partial F}{\partial z} = 3xy^2z^2 - 3\lambda = 0</math> | |||
<math>\frac{\partial F}{\partial \lambda} = g = x + 2y + 3z - 6 = 0</math> | |||
Az első egyenlet 2x szeresét a második egyenlet y szorosával egyenlővé téve: | |||
<math>2xy^2z^3 - 2 \lambda x = 2xy^2z^3 - 2\lambda y</math> | |||
<math>\lambda x = \lambda y</math> | |||
Azaz <math>\lambda = 0</math> vagy <math>x = y</math> | |||
* <math>\lambda = 0</math> eset: <math>x = y = z = \lambda = 0</math> (ellentmondás: x, y, z pozitív a feladat szerint) | |||
* <math>x = y</math> eset: | |||
Az második egyenlet 3y szeresét a harmadik egyenlet 2z szeresét egyenlővé téve: | |||
<math>6x^3z^3 - 6\lambda x = 6x^3z^3 - 6\lambda z</math> | |||
Vagyis (ismerve, hogy <math>\lambda \neq 0</math>): | |||
<math>x = y = z = \lambda = 1</math> | |||
A definitséghez szükség van ebben a pontban a feltétel gradiensére: | |||
<math>grad(g) = \begin{bmatrix}1 & 2 & 3\end{bmatrix}</math> | |||
Illetve a gradiensre merőleges vektorok alakjára (skalárszorzat alapján: <math><\begin{bmatrix}1 & 2 & 3\end{bmatrix}, \begin{bmatrix}x & y & z\end{bmatrix}> = 0</math>) | |||
<math>\begin{bmatrix}3x & 3y & -x-2y\end{bmatrix}</math> | |||
Ezen kívül még az F Hesse mátrixa is kelle fog ebben a pontban: | |||
<math>\left. \begin{bmatrix}{F_{xx}}'' & {F_{xy}}'' & {F_{xz}}'' \\ {F_{yx}}'' & {F_{yy}}'' & {F_{yz}}'' \\ {F_{zx}}'' & {F_{zy}}'' & {F_{zz}}''\end{bmatrix} \right|_{x=1,y=1,z=1} = \left. \begin{bmatrix}0 & 2yz^3 & 3y^2z^2 \\ 2yz^3 & 2xz^3 & 6xyz^2 \\ 3y^2z^2 & 6xyz^2 & 6xy^2z \end{bmatrix}\right|_{x=1,y=1,z=1} = \begin{bmatrix}0 & 2 & 3 \\ 2 & 2 & 6 \\ 3 & 6 & 6 \end{bmatrix}</math> | |||
A definitséghez szorozzuk meg a Hesse mátrixot a gradiensre merőleges vektorokkal mindkét oldalról: | |||
<math>\begin{bmatrix}3x & 3y & -x-2y\end{bmatrix} \begin{bmatrix}0 & 2 & 3 \\ 2 & 2 & 6 \\ 3 & 6 & 6 \end{bmatrix} \begin{bmatrix}3x \\ 3y \\ -x-2y\end{bmatrix} = \begin{bmatrix}-3x & -6y & 3x + 6y\end{bmatrix} \begin{bmatrix}3x \\ 3y \\ -x-2y\end{bmatrix} = -9x - 18y^2 -3x^2 -6xy -6xy -12y^2 = -12x^2 -12xy - 30y^2 = -6 (x^2 + xy + 5y^2) </math> | |||
Ennek az előjele lehet pozitív és negatív is x és y értékétől függően, vagyis a mátrix indefinit, azaz itt nincs szélsőérték. | |||
(Ha mindig pozitív lett volna, az minimum helyet jelölt volna, ha mindig negatív akkor maximum, ha mindig nulla, akkor pedig nyereg pont.) | |||
}} | |||
<big>2)</big> <small>[2016ZH2]</small> Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!) | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>F = 3x^2 + y^2 + z^2 - xy - \lambda(x^2 + y^2 + z^2 - 1)</math> | |||
<math>\frac{\partial F}{\partial x} = 6x - y - 2\lambda x = 0</math> | |||
<math>\frac{\partial F}{\partial y} = 2y - x - 2\lambda y = 0</math> | |||
<math>\frac{\partial F}{\partial z} = 2z - 2\lambda z = 0</math> | |||
<math>\frac{\partial F}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0</math> | |||
3) [2016PZH] Hol lehet feltételes szélsőértéke a <math>x^2 + y^2 + z^2 - 2xy -2xz</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét! | A harmadik egyenletből: | ||
<math>(1 - \lambda)z = 0</math> | |||
Azaz <math>\lambda = 1</math> vagy <math>z = 0</math> | |||
* <math>\lambda = 1</math> eset: <math>x = y = 0</math>, <math>z = \lambda = 1</math> | |||
* <math>z = 0</math> eset: | |||
Az első egyenletből: <math>y = (6-2\lambda)x</math> | |||
Az második egyenletből egyenletből: | |||
<math>2(6-2\lambda)x - x - 2\lambda (6-2\lambda)x = 0</math> | |||
<math>(4 \lambda^2 - 16\lambda + 11)x = 0</math> (x = 0: ellentmondás) | |||
<math>4 \lambda^2 - 16\lambda + 11 = 0</math> | |||
<math>\lambda_{1,2} = \frac{16 \pm \sqrt{80}}{8} = \frac{4 \pm \sqrt{5}}{2}</math> | |||
A negyedik egyenlet alapján: | |||
<math>x^2 + (2 \pm \sqrt{5})^2 x^2 = 1</math> | |||
Vagyis a megoldások (4 db): | |||
<math>x = \pm \sqrt{\frac{1}{1 + (2 \pm \sqrt{5})^2}}, ~y= \pm(2 \pm \sqrt{5}) \sqrt{\frac{1}{1 + (2 \pm \sqrt{5})^2}},~z=0, \lambda = \frac{4 \pm \sqrt{5}}{2}</math> | |||
}} | |||
<big>3)</big> <small>[2016PZH]</small> Hol lehet feltételes szélsőértéke a <math>x^2 + y^2 + z^2 - 2xy -2xz</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>F = x^2 + y^2 + z^2 - 2xy -2xz - \lambda (x^2 + y^2 + z^2 - 1)</math> | |||
<math>\frac{\partial F}{\partial x} = 2x - 2y -2z -2 \lambda x = 0</math> | |||
<math>\frac{\partial F}{\partial y} = 2y - 2x - 2 \lambda y = 0</math> | |||
<math>\frac{\partial F}{\partial y} = 2z - 2x - 2 \lambda z = 0</math> | |||
<math>\frac{\partial F}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0</math> | |||
Vonjuk ki a második egyenletből a harmadikat: | |||
<math>(1 - \lambda)(y - z) = 0</math> | |||
Azaz <math>\lambda = 1</math> vagy <math>y = z</math> | |||
* <math>\lambda = 1</math> | |||
A második és harmadik egyenlet is azt adja, hogy: | |||
<math>x = 0</math> | |||
Az első egyenlet alapján: | |||
<math>y = -z</math> | |||
Tehát a két megoldás (a negyedik egyenlet alapján): | |||
<math>(0, \pm\sqrt{2}, \mp\sqrt{2}, 1)</math> | |||
* <math>y = z</math> eset | |||
<math>(1 - \lambda) x - 2y = 0</math> | |||
<math>(1 - \lambda) y - x = 0</math> | |||
<math>x^2 + 2y^2 = 1</math> | |||
A második egyenletből: | |||
<math>x = (1 -\lambda) y</math> | |||
Az első egyenletbe írva: | |||
<math>(1 - \lambda)^2 y - 2y = 0</math> | |||
<math>-(\lambda^2 + 1)y = 0</math> | |||
Azaz <math>y = z = x = 0</math>, ellentmondás. | |||
<hr> | |||
<big>A szélsőértékek jellege:</big> | |||
<math>grad(g) = (2x, 2y, 2z)</math> | |||
Az adott pontokban: | |||
<math>grad(g) = (0, \pm 2 \sqrt{2}, \mp 2 \sqrt{2})</math> | |||
Az erre merőleges vektorok: <math>(x, y, y)</math> | |||
A Hesse mátrix: | |||
<math>\left. \begin{bmatrix}{F_{xx}}'' & {F_{xy}}'' & {F_{xz}}'' \\ {F_{yx}}'' & {F_{yy}}'' & {F_{yz}}'' \\ {F_{zx}}'' & {F_{zy}}'' & {F_{zz}}''\end{bmatrix} \right|_{x=0,y=\pm\sqrt{2},z=\mp\sqrt{2},\lambda=1} = \left. \begin{bmatrix}2 - 2\lambda & 2 & 2 \\ 2 & 2 - 2\lambda & 0 \\ 2 & 0 & 2 - 2\lambda \end{bmatrix}\right|_{x=0,y=\pm\sqrt{2},z=\mp\sqrt{2},\lambda=1} = \begin{bmatrix}0 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}</math> | |||
A definitség: | |||
<math>\begin{bmatrix}x & y & y\end{bmatrix} \begin{bmatrix}0 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix}x \\ y \\ y\end{bmatrix} = \begin{bmatrix}4y & 2x & 2x\end{bmatrix} \begin{bmatrix}x \\ y \\ y\end{bmatrix} = 16xy</math> | |||
Ez indefinit, itt nincs szélsőérték. | |||
}} | |||
== Variáció számítás == | == Variáció számítás == | ||
1) [2015ZH2] Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt! | <big>1)</big> <small>[2015ZH2]</small> Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt! | ||
<math>I(y) = \int_{-1}^{2}y'^2 + x^3 - 2xydx</math> | <math>I(y) = \int_{-1}^{2}y'^2 + x^3 - 2xydx</math> | ||
165. sor: | 960. sor: | ||
<math>y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}</math> | <math>y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}</math> | ||
2) [2015ZH2] Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt! | {{Rejtett | ||
|mutatott=Megoldás: | |||
|szöveg= | |||
Ez a feladattípus arról szól, hogy használjuk az Euler-Lagrange (EL) egyenletet: <math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = 0</math> | |||
* Vegyük észre, hogy két különböző deriváltjel szerepel a képletben, és ezek mást jelentenek. | |||
* A <math>\frac{\partial}{\partial x}</math> azt jelenti, hogy csak az <math>x</math>-et közvetlenül tartalmazó tagokat deriváljuk, de az <math>x</math>-től függő <math>y(x)</math> függvényt már konstansnak (független változónak) tekintjük a deriválás szempontjából. | |||
** <math>\frac{\partial x}{\partial x} = 1,~\frac{\partial y(x)}{\partial x} = 0,~\frac{\partial y'(x)}{\partial x} = 0</math> | |||
* A <math>\frac{d}{d x}</math> esetében mindent deriválunk <math>x</math> szerint, ami függ <math>x</math>-től. | |||
** <math>\frac{d x}{d x} = 1,~\frac{d y(x)}{d x} = y'(x),~\frac{d y'(x)}{d x} = y''(x)</math> | |||
Az f függvény, amire alkalmazni kell az EL-t, az az integrál belseje: <math>f(x, y, y') = y'^2 + x^3 - 2xy</math>. Ha lenne feltétel is, akkor ugyanúgy be kéne vezetni egy <math>F = f - \lambda g</math> függvényt, és arra kéne megoldani az EL-t. | |||
<math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = -2x - \frac{d}{d x}2y' = -2x - 2y'' = 0</math> | |||
<math>y''(x) = -x</math> | |||
<math>y'(x) = -\frac{x^2}{2} + c</math> | |||
<math>y(x) = -\frac{x^3}{6} + cx + d</math> | |||
A kezdeti felételeket felhasználva: | |||
<math>y(-1) = \frac{1}{6} - c + d = \frac{1}{6}</math> | |||
<math>c = d</math> | |||
<math>y(2) = -\frac{8}{6} + 2c + d = -\frac{4}{3} + 3c = \frac{5}{3}</math> | |||
<math>3c = \frac{9}{3} = 3</math> | |||
Tehát <math>c = 1,~d = 1</math>, azaz a megoldás: | |||
<math>y(x) = -\frac{x^3}{6} + x + 1</math>. | |||
}} | |||
<big>2)</big> <small>[2015ZH2]</small> Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt! | |||
<math>I(y) = \int_{-1}^{2}y'^3 + x^3 - 2xydx</math> | <math>I(y) = \int_{-1}^{2}y'^3 + x^3 - 2xydx</math> | ||
<math>y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}</math> | <math>y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}</math> | ||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>\frac{\partial f}{\partial y} - \frac{d}{d x}\frac{\partial f}{\partial y'} = -2x - \frac{d}{d x}3y'^2 = -2x - 6y'y'' = 0</math> | |||
Vezessünk be egy <math>p = y' = \frac{dy}{dx}, ~p' = y'' = \frac{dp}{dx}</math> változót, és erre oldjuk meg a differenciálegyenletet (ha az egyenletből az x hiányozna, akkor y szerinti deriválásra kéne áttérni). | |||
<math>-x = 3 p \frac{dp}{dx}</math> | |||
<math>3 p~dp = -x~dx</math> | |||
<math>\frac{3}{2} p^2 = -\frac{x^2}{2} + c</math> | |||
Írjuk vissza az y'-t p helyére | |||
<math>\left(\frac{dy}{dx}\right)^2 = -\frac{x^2}{3} + c_2</math> | |||
<math>dy^2 = \left(-\frac{x^2}{3} + c_2\right)dx^2</math> | |||
<math>dy = \pm \left(\sqrt{\frac{1}{3}} \sqrt{-x^2 + c_3}\right) dx</math> | |||
Ez egy sokkal nehezebb integrál, mint ami ZH-kon elő szokott fordulni. | |||
Amúgy elvileg megoldható <math>x = \sqrt{c_3} \sin u</math> és <math>dx = \sqrt{c_3} \cos u\,du</math> helyettesítéssel meg néhány trigonometrikus összefüggés felhasználásával, és ez lesz a eredménye: | |||
<math>y = \pm \frac{1}{2\sqrt{3}} \left(x \sqrt{c_3 - x^2} + c_3 \arctan(\frac{x}{\sqrt{c_3 - x^2}}) \right) + d</math> | |||
A két kezdeti feltételt felhasználva ki lehet számolni a két konstans értékét (<math>c_3, d</math>). De analitikusan ez még a Mathematica-nak sem sikerült. Persze lehet próbálkozni numerikus módszerekkel :p | |||
Valami nagyon el van b*va ezzel a feladattal. | |||
https://s-media-cache-ak0.pinimg.com/236x/55/08/4b/55084be16a6b92e2cdb97951f371f4df.jpg | |||
}} | |||
<big>3)</big> <small>[2016V1]</small> Keressük meg az extremális függvényt az <math>I(y) = \int_0^1 y(2-y') dx,~y(0) = 1,~ y(1) = 2</math> operátorra vonatkozóan a <math>J(y) = \int_0^1 y'^2 = \frac{13}{3}</math> feltétel mellett! | |||
{{Rejtett | |||
|mutatott=Megoldás: | |||
|szöveg= | |||
<math>F = y(2-y') - \lambda y'^2</math> | |||
Erre alkalmazzuk az Euler-Lagrange egyenletet: | |||
<math>2-y' - \frac{d}{dx}(-y - 2\lambda y') = 2-y' + y' + 2\lambda y'' = 2 + 2\lambda y'' = 0</math> | |||
<math>y'' = \frac{-1}{\lambda}</math> | |||
<math>\frac{dy'}{dx} = \frac{-1}{\lambda}</math> | |||
<math>\int dy' = \int \frac{-1}{\lambda} dx</math> | |||
<math>y' = \frac{-x}{\lambda} + c_1</math> | |||
<math>\frac{dy}{dx} = \frac{-x}{\lambda} + c_1</math> | |||
<math>\int dy = \int \frac{-x}{\lambda} + c_1 dx</math> | |||
<math>y = \frac{-x^2}{2 \lambda} + c_1 x + c_2</math> | |||
Használjuk fel a kezdeti feltételeket! | |||
<math>y(0) = c_2 = 1</math> | |||
<math>y(1) = \frac{-1}{2 \lambda} + c_1 + 1 = 2</math> | |||
<math>c1 = 1 + \frac{1}{2 \lambda}</math> | |||
A <math>\lambda</math>-hoz ki kell számolni J(y)-t. | |||
<math>y = \frac{-x^2}{2 \lambda} + x + \frac{x}{2 \lambda} + 1</math> | |||
<math>y' = \frac{-x}{\lambda} + 1 + \frac{1}{2 \lambda}</math> | |||
<math>y'^2 = \frac{x^2}{\lambda^2} - \frac{2x}{\lambda} + 1 - \frac{2x}{2\lambda^2} + \frac{2}{2\lambda} + \frac{1}{4 \lambda^2} = \frac{1}{\lambda^2} \left( x^2 - 2x\lambda + \lambda^2 - x + \lambda + \frac{1}{4} \right)</math> | |||
<math>\int_0^1 y'^2 = \frac{1}{\lambda^2} \left[ \frac{x^3}{3} - \lambda x^2 + \lambda^2 x - \frac{x^2}{2} + \lambda x + \frac{x}{4} \right]_0^1 = \frac{1}{\lambda^2} \left( \frac{1}{3} - \lambda + \lambda^2 - \frac{1}{2} + \lambda + \frac{1}{4} \right) = 1 + \frac{1}{12\lambda^2} = \frac{13}{3}</math> | |||
<math>\lambda^2 = \frac{3}{120} = \frac{1}{40}</math> | |||
<math>\lambda = \pm \frac{1}{\sqrt{40}}</math> | |||
Visszaírva y-ba: | |||
<math>y(x) = \mp \sqrt{10} x^2 + (1\pm\sqrt{10}) x + 1</math> | |||
}} |
A lap jelenlegi, 2016. október 22., 12:36-kori változata
Az Analízis (MSc) tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni.
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
- Vegyük mindkét egyenlet Laplace trafóját ():
- Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
- Mátrixos alakra hozva:
- Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
- Az inverz laplacehoz bontsuk parciális törtekre:
- Együtthatókat összehasonlítva:
- Ahonnan:
- Vagyis
- Tehát a táblázat alapján
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
- Vegyük mindkét egyenlet Laplace trafóját:
- Átrendezve és mátrixos alakra hozva:
- Megoldás X-re:
- Parc törtek:
- Ahonnan:
- Inverz Laplace után:
3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
- Számítsuk ki a tagok Laplace trafóját (x szerint):
- Tehát az egyenlet Laplace transzformáltja (elsőrendű Y-ban):
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
- Számoljuk ki -et!
- Vegyük ennek az egyenletnek a végtelenben vett határértékét:
- Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben:
- Tehát:
- Amiből:
- Csináljuk meg ugyanezt -re!
- Vagyis:
- Amiből:
- Végül csináljuk meg ugyanezt -re!
- Itt a határérték picit bonyolultabb:
- Amiből:
2) [2016V2] Számítsuk ki az alábbi integrált:
Laplace tulajdonságok miatt .
Jelen esetben , számoljuk ki az integrált:
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
- Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: )!:
- Átrendezve:
- Aminek a disztribúció értelemben vett megoldás Y-ra:
- Ha , akkor leoszthatunk vele.
- Ha , akkor , vagyis bármilyen konstans lehet, ezt jelöljük pl c-vel.
- Az összeg jobboldali tagja egyszerűsíthető, ha kihasználjuk, hogy az egy disztribúció (a a nevezőben lévő s-be is nullát helyettesít):
- Vagyis:
- Aminek vegyük az inverz Fourier transzformáltját:
- Megjegyzés: A táblázatban szerepel , de nekünk inverz trafó kell
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
- Számítsuk ki az egyenlet tagjainak Fourier trafóját (x szerint):
- Vagyis az egyenlet Fourier trafója (elsőrendű diff-egyenlet -ra):
3) [2016V1] Fourier transzformáció segítségével határozzuk meg u(x, t)-t, ha
Egy u(x, y) függvény x szerinti Fourier trafójának a definíciója:
Vegyük az egyenlet x szerinti Fourier trafóját (a deriválás x-ben -el szorzás):
Oldjuk meg a diff-egyenletet y-ra (az y szerinti deriváltat jelölje a vessző):
Tudjuk, hogy ez a kifejezés -ben nullához tart, mert egy Fourier trafó:
Ami, tekintve, hogy , csak akkor teljesülhet, ha .
Tehát:
A kezdeti feltétel Fourier trafója:
A két egyenletet összevetve:
Vagyis:
-hoz vegyük ennek az x szerinti inverz Fourier trafóját:
Vezessük be a változót:
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Vezessük be a jelölést!
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
- Nézzük meg, hogy egy függvényre hogyan viselkedik a feladatban szereplő disztribúció!
- Vagyis:
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
- Elődáson volt, hogy
- Ezt felasználva alkalmazzuk a disztribúciót a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
- Ha , akkor leoszthatunk vele, és azt kapjuk, hogy .
- Ha , akkor , vagyis bármilyen konstans értéket felvehet, ezt jelöljük pl c-vel.
- Tehát ha , akkor , ha , akkor tetszőleges értékű, ez röviden:
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
- Először szabaduljunk meg a konvulúciótól:
- Az , ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető):
- Majd értékeljük ki a disztribúciót a függvényen:
Wavelet trafók
Megjegyzés: a kitevőbe írt törtek (pl: ) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni.
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy
a) A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül:
A táblázatban nincs benne, de közismert, hogy
A táblázatból kiolvasott képletbe behelyettesítve:
b)
Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet:
Használjuk ki, hogy korábban már kiszámoltuk, hogy
Amit kétszer parciálisan integrálva meg is kapjuk az eredményt:
2) [2016ZH1] A Poisson wavelet a következő:
a) Mutassuk meg, hogy , ha
b) Mutassuk meg, hogy
c)
a)
b)
c)
Először számoljuk ki a wavelet Fourier trafóját (felhasználom, hogy ):
3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
- Az -t keressük szorzat alakban:
- A diffegyenlet így átírva:
- Ez így már szeparálható:
- Figyeljünk arra, hogy a deriváltak a számlálóban legyenek
- A szeparálás utáni hányadosokról pedig tudjuk, hogy negatívak (innen jön a )
- Nézzük meg, hogy melyik változóra van feltételünk, aminek a jobb oldalán konstans szerepel.
- Az első két féltétel átírva: , minden t-re, vagyis
- Tehát az X-re van a T-től nem függő feltételünk, ezért először az X-re oldjuk meg a diffegyenletet!
- Oldjuk meg a diff-egyenletet:
- Írjuk fel a karakterisztikus függvényt!
- Vagyis a diff-egyenlet megoldása:
- Vizsgáljuk meg a kezdeti feltételeket:
Ami csak olyan egész k értékekre teljesülhet, amikre:
- Most oldjuk meg a diff-egyenletet T(t)-re, de a b helyére az újonnan kapott képletet írjuk be.
- A T-re vonatkozó (k-tól függő) diff-egynelet:
- Az -re vonatkozó k-tól függő egyenlet tehát:
- Vezessük be az és konstansokat!
- Az pedig felírható az -k összegeként az összes k-ra.
- A maradék két feltétel segítségével számoljuk ki az és konstansok értékeit.
Amiből az együtthatók összehasonlításával megkapjuk, hogy , minden más , ha
- A másik feltételhez ki kell számolni az -t.
- A feltételbe beírva:
Innen pedig: , minden más pedig nulla.
Vagyis a megoldás:
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Először oldjuk meg x-re:
A -hoz tartozó megoldás nem érdekel minket, tehát .
Az X azonosan nulla megoldás megint nem érdekel minket, így:
Most oldjuk meg a T-re vonatkozó diff-egyenletet
Írjuk fel -t!
Majd pedig az ebből generált sort:
, minden más pedig nulla.
Vagyis:
.Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
- Írjuk fel a diffegyenletet véges differenciákkal:
- Írjuk fel a differál-egyenletet differa-egyenlet formában!
- Közös nevezőre hozva:
- Na most felejtsük, hogy delta nullához tart, és válasszunk ki egy megfelelően kicsi értéket vízszintes (h) és függőleges (k) irányban. A folytonos függvény helyett pedig használjuk egy ilyen lépésközönként mintavételezett diszkrét függvényt, ahol jeletése .
- Válasszuk meg a feladatban adott h értékhez a k értékét, hogy az egyenletből a lehető legtöbb tag kiessen (jelen esetben a választás célszerű).
- Fejezzük ki -et az egyenletből.
- Ennek a képletnek a rekurzív alkalmazásával el tudunk jutni a peremfeltételtől az u_{1,2} értékig.
- Innen az és a ismert a peremfeltétel alapján, de az -ért még számolnunk kell.
- Az -hez a nullában vett t szerinti deriváltra vonatkozó feltételt kell használni:
- Vagyis:
- A kért pont tehát kiszámolható az alábbi peremen található értékekből (papíron egyszerűbb felvenni egy négyzetrácsot az értékeknek, és mindenhova odaírni az adott értéket):
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Az egyszerű számolás miatt legyen
Ez alapján a keresett érték:
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
- Először meg kell határozni B sajátértékeit. Ezt a egyenlet megoldásaiként kapjuk meg. Most az -os szorzó miatt inkább számoljuk azzal, hogy
- Fejtsük ki a determinánst az első oszlop szerint:
- Most határozzunk meg minden sajátértékhez egy sajátvektort (itt az -os szorzó nem számít, a sajátvektor csak konstans szorzó erejéig egyértelmű)
- Először a -hoz keresünk két sajátvektort:
- Mindhárom egyenletünk megegyezünk, az y legyen mondjuk 1, ekkor a z-nek -2-nek kell lennie, az x tetszőleges. Az x=0 és az x=1 két lineáris független sajátvektort ad.
- Határozzuk meg a -höz tartozó sajátvektort is:
- Tehát egy sajátvektor például:
- A Jordan-normál forma (sajátértékek főátalóban, itt már számít a skalár szorzó) és a transzformációs mátrix (sajátvektorok alkotta mátrix):
- A végeredményt az alábbi alakban kapjuk majd meg: . Ehhez viszont először invertálni kell T-t.
- Gauss-elimináljunk!
- Számoljuk ki -t!
- A végeredmény tehát (a mátrix szorzásokat már nem kell elvégezni):
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
a) A húrmódszer konvergens ha a tartomány összes pontján.
Ez megadja, hogy max mekkora lehet az intervallum hossza, hogy az algoritmus konvergáljon. Gyakorlatban azt szoktuk vizsgálni, hogy a számláló maximuma és a nevező minimuma esetén is teljesül-e a feltétel, ami egy szűkebb feltétel, de becslésnek jó.
Számoljuk ki a deriváltakat!
Nézzük meg ezeknek a minimumát és maximumát (csak a tartomány szélei érdekesek, nincs lokális minimuma, tehát az x helyére mindenhova négyet vagy ötöt írunk)
b) Az iteráció konvergens ha a tartomány összes pontján.
Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens.
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
- Iteráció: , az [1, 2] intervallum összes pontján. Ebből következik, hogy az iteráció bármely részintervallumon divergens lesz, tehát nem használható.
- Húrmódszer:
Vagyis az algoritmus konvergens, ha
3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága:
A iteráció esetében a pontosság -el szorzódik meg minden iteráció után. Ha ez kisebb, mint , akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés.
Az [1,2] tartományon ennek a maximuma ami nagyobb, mint 1, ezért itt az iteráció még csak nem is konvergens. A [2, 3] tartományon a maximum , tehát itt az iteráció gyorsabban konvergál.
4) [2016V1] Newton (érintő) módszerrel keressük a egyenlet megoldását. Adjuk meg -et és segítségével!
Legyen . Adjuk meg -t úgy, hogy a módszer konvergáljon!
Mi a konvergencia sebessége?
A konvergencia feltétele: a tartomány összes pontján, illetve ezt közelíthetjük a számláló maximumával és nevező minimumával:
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
- Vezessük be az alábbi függvényt:
- A szélsőérték akkor létezhet, ha az összes változó szerinti derviált nulla:
Az első egyenlet 2x szeresét a második egyenlet y szorosával egyenlővé téve:
Azaz vagy
- eset: (ellentmondás: x, y, z pozitív a feladat szerint)
- eset:
Az második egyenlet 3y szeresét a harmadik egyenlet 2z szeresét egyenlővé téve:
Vagyis (ismerve, hogy ):
A definitséghez szükség van ebben a pontban a feltétel gradiensére:
Illetve a gradiensre merőleges vektorok alakjára (skalárszorzat alapján: )
Ezen kívül még az F Hesse mátrixa is kelle fog ebben a pontban:
A definitséghez szorozzuk meg a Hesse mátrixot a gradiensre merőleges vektorokkal mindkét oldalról:
Ennek az előjele lehet pozitív és negatív is x és y értékétől függően, vagyis a mátrix indefinit, azaz itt nincs szélsőérték.
(Ha mindig pozitív lett volna, az minimum helyet jelölt volna, ha mindig negatív akkor maximum, ha mindig nulla, akkor pedig nyereg pont.)2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
A harmadik egyenletből:
Azaz vagy
- eset: ,
- eset:
Az első egyenletből:
Az második egyenletből egyenletből:
(x = 0: ellentmondás)
A negyedik egyenlet alapján:
Vagyis a megoldások (4 db):
3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Vonjuk ki a második egyenletből a harmadikat:
Azaz vagy
A második és harmadik egyenlet is azt adja, hogy:
Az első egyenlet alapján:
Tehát a két megoldás (a negyedik egyenlet alapján):
- eset
A második egyenletből:
Az első egyenletbe írva:
Azaz , ellentmondás.
A szélsőértékek jellege:
Az adott pontokban:
Az erre merőleges vektorok:
A Hesse mátrix:
A definitség:
Ez indefinit, itt nincs szélsőérték.Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
Ez a feladattípus arról szól, hogy használjuk az Euler-Lagrange (EL) egyenletet:
- Vegyük észre, hogy két különböző deriváltjel szerepel a képletben, és ezek mást jelentenek.
- A azt jelenti, hogy csak az -et közvetlenül tartalmazó tagokat deriváljuk, de az -től függő függvényt már konstansnak (független változónak) tekintjük a deriválás szempontjából.
- A esetében mindent deriválunk szerint, ami függ -től.
Az f függvény, amire alkalmazni kell az EL-t, az az integrál belseje: . Ha lenne feltétel is, akkor ugyanúgy be kéne vezetni egy függvényt, és arra kéne megoldani az EL-t.
A kezdeti felételeket felhasználva:
Tehát , azaz a megoldás:
.2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
Vezessünk be egy változót, és erre oldjuk meg a differenciálegyenletet (ha az egyenletből az x hiányozna, akkor y szerinti deriválásra kéne áttérni).
Írjuk vissza az y'-t p helyére
Ez egy sokkal nehezebb integrál, mint ami ZH-kon elő szokott fordulni.
Amúgy elvileg megoldható és helyettesítéssel meg néhány trigonometrikus összefüggés felhasználásával, és ez lesz a eredménye:
A két kezdeti feltételt felhasználva ki lehet számolni a két konstans értékét (). De analitikusan ez még a Mathematica-nak sem sikerült. Persze lehet próbálkozni numerikus módszerekkel :p
Valami nagyon el van b*va ezzel a feladattal.
https://s-media-cache-ak0.pinimg.com/236x/55/08/4b/55084be16a6b92e2cdb97951f371f4df.jpg3) [2016V1] Keressük meg az extremális függvényt az operátorra vonatkozóan a feltétel mellett!
Erre alkalmazzuk az Euler-Lagrange egyenletet:
Használjuk fel a kezdeti feltételeket!
A -hoz ki kell számolni J(y)-t.
Visszaírva y-ba: