„Laboratórium 2 - ZH, 2004 tavasz” változatai közötti eltérés

A VIK Wikiből
David14 (vitalap | szerkesztései)
 
(16 közbenső módosítás, amit 4 másik szerkesztő végzett, nincs mutatva)
9. sor: 9. sor:
[[File:Labor2_ZH_2004_ábra1.jpg|400px]]
[[File:Labor2_ZH_2004_ábra1.jpg|400px]]


Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R1 = 18 kOhm
Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R3 = 18 kOhm
    
    
Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén!
Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén!
116. sor: 116. sor:
}}
}}


==4.==
==4. Hall-szondás árammérő==
Írja le a váltkaozó áramú árammérő lakatfogó és egyenáramon is használható Hall-szondás árammérő lakatfogó működési elvét!


A lakatfogó egy olyan áramváltónak tekinthető, melynek primer tekercse 1 menetszámú. (Ez az a vezeték melynek áramát mérni szeretnénk.( A szekunder tekercs pedig egy zárt, de egy ponton nyitható vasmagra van csévélve. Az I áram a vezetékre koncentrikus H-t kelt. Az a közegben B-t hoz létre, amely a szekunder tekercsben fesüzltséget indukál (RAJZ!)
Írja le a váltakozó áramú árammérő lakatfogó és egyenáramon is használható Hall-szondás árammérő lakatfogó működési elvét!


<math> \frac{N_2}{N_1}=\frac{I_1}{I_2} \rightarrow N_2=\frac{I_1}{I_2} \rightarrow I_1=N_2 \cdot I_2</math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=  


A Hall szondás műszer azon elven alapszik, hogy ha egy félvezetőben áram folyik, arra merőlegesen pedig mágneses tér van, akkor mindezekre merőlegesen a szonda két lapja között fesüzltség esik, a Hall fesüzltség. (RAJZ!) U ~ B\cdot I
A lakatfogó egy olyan áramváltónak tekinthető, melynek primer tekercse 1 menetszámú. Ez az a vezeték melynek áramát mérni szeretnénk. A szekunder tekercs pedig egy zárt, de egy ponton nyitható vasmagra van csévélve. Az I áram a vezetékre koncentrikus H mágneses térerősséget kelt, ami közegben azonos irányú B mágneses indukciót hoz létre, amely a szekunder tekercsben feszültséget indukál - RAJZ!
 
 
<math> \frac{N_2}{N_1}=\frac{I_1}{I_2} \longrightarrow N_2=\frac{I_1}{I_2} \longrightarrow I_1=N_2 \cdot I_2</math>
 
 
A Hall-szondás műszer azon elven alapszik, hogyha egy félvezetőben áram folyik, arra merőlegesen pedig mágneses tér van, akkor mindezekre merőlegesen a szonda két lapja között feszültség esik - RAJZ! A Hall-feszültség: <math> U \sim B\cdot I </math>
 
}}
 
==5-6. Mérőerősítő==


==5-6.==
Az alábbi ábrán egy mérőerősítő elvi kapcsolási rajza látható.
Az alábbi ábrán egy mérőerősítő elvi kapcsolási rajza látható.


{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|labor2zh_2004_56abra.jpg}}
[[File:Labor2_ZH_2004_ábra3.jpg|350px]]
 
Az ellenállások adatai:


Az alkatrészek adatai: R11 = R12 = 10kOhm, R21 = R22 = 490 kOhm, tűrésük h = 0,1%. Az erősítő adatai: Aus0 = 100 V/mV, Ekv,min = 100 dB. Az egységnyi erősítéshez tartozó határfrekvencia f2 = 10 Mhz, a fázistartalék fí = 45 fok.
:<math>R_{11} = R_{12} = 10 \; k\Omega</math>


* Határozza meg a fenti kapcsolás (a) eredő szimmetrikus feszültségerősítését, (b) az erősítés statikus hibáját, (c) közös feszültségerősítését, (d) eredő (-3 dB-es) felső határfrekvenciáját!
:<math>R_{21} = R_{22} = 490 \; k\Omega</math>
 
:<math>h = 0,1 \%</math> - Az ellenállások tűrése
 
 
Az erősítő adatai:
 
:<math>A_{us0} = 100 \; {V \over mV}</math>
 
:<math>E_{kv,min} = 100 \;dB</math>
 
:<math>f_2 = 10 \; MHz</math> - Az egységnyi erősítéshez tartozó határfrekvencia
 
:<math>\varphi = 45^{\circ}</math> - Fázistartalék
 
 
Határozza meg a fenti kapcsolás:
*(a) eredő szimmetrikus feszültségerősítését
*(b) az erősítés statikus hibáját
*(c) közös feszültségerősítését
*(d) eredő (-3 dB-es) felső határfrekvenciáját!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Eredő szimmetrikus feszültségerősítés:
Eredő szimmetrikus feszültségerősítés:
<math> A_U = - \frac{R_{21}}{R_{11}} = -49 </math>
<math> A_U = - \frac{R_{21}}{R_{11}} = -49 </math>


Erősítés statikus hibája:
Erősítés statikus hibája:
<math> h_S=|h_{R_1}|+|h_{R_2}|+|h_H|=2\cdot 0,001+\frac{1}{H_o} </math>


<math> H_o = A_o \cdot {\beta}_o = 10^5 \cdot \frac{R_{21}}{R_{21}+R_{11}}; \frac{1}{H_o} = 10^{-5} </math>
<math> h_S=|h_{R_1}|+|h_{R_2}|+|h_H|=2\cdot 0,001+\frac{1}{H_o} = 0,002+0,00001 = 0,00201</math>
 
<math> H_o = A_o \cdot {\beta}_o = 10^5 \cdot \frac{R_{21}}{R_{21}+R_{11}} \longrightarrow \frac{1}{H_o} \approx 10^{-5} </math>
 


Közös feszültségerősítés:
Közös feszültségerősítés:


<math> E_{Uk} = 100dB </math> és <math> A_{US} = 10^5 </math> , így A<sub>US</sub> = A<sub>Uk</sub> + 100dB és <math> 20 log_{10}10^5 = 100dB; A_{Uk} = 0dB </math>.
<math> E_{Uk} = 100 \; dB </math>


Eredő (-3 dB-es) felső határfrekvencia: <math> f_e = f_2 (1+H_o) = 10MHz \cdot 10^5 = 1THz </math>
<math> A_{Us} = 10^5 = 20 \cdot \log_{10} \left( 10^5 \right) \; dB= 100 \; dB</math>


(Invertáló erősítőfokozathoz hasonló.)
<math>E_{Uk} = A_{Us} - A_{Uk} \longrightarrow A_{Uk} = A_{Us} - E_{Uk} = 100 \; dB - 100 \; dB = 0 \; dB</math>


* Határozza meg a domináns pólus törésponti frekvenciáját úgy, hogy a visszacsatolt erősítő amplitudómenete maximálisan lapos legyen!


<math> Q=\frac{1}{\sqrt{2}}</math>; <math> \frac{\omega_2}{\omega_1}=2H_o \rightarrow \omega_1=\frac{\omega_2}{2H_o} = 51\frac{rad}{s} </math>
Eredő (-3 dB-es) felső határfrekvencia:


* Határozza meg az erősítő kimeneti feszültségének várható szélső értékeit, ha az erősítő előzőleg ki lett ofszetelve, és az erősítő bemeneteire a következő feszültségeket kapcsoljuk: U1 = 998 mV, U2 = 1002 mV!
<math> f_e = f_2 \cdot (1+H_o) \approx 10 \; MHz \cdot 10^5 = 1 \; THz </math>


<math> U_{min}=( \frac{U_2-U_1}{2} ) A_{US} \cdot (1-|h_S|) + \frac{U_2+U_1}{2} A_{Uk} </math>
}}


<math> U_{max}=( \frac{U_2-U_1}{2} ) A_{US} \cdot (1 + |h_S|) + \frac{U_2+U_1}{2} A_{Uk} </math>
Határozza meg a domináns pólus törésponti frekvenciáját úgy, hogy a visszacsatolt erősítő amplitudómenete maximálisan lapos legyen!


==7. ==
{{Rejtett
Adja meg egy A/D átalakító SINAD paraméterének számítási módját az idő és frekvenciatartományban! Definiálja az összefüggésben szereplő mennyiségeket! Hasonlítsa össze a két számítási módszert!
|mutatott='''Megoldás'''
|szöveg=
 
<math> Q=\frac{1}{\sqrt{2}}</math>
 
<math> \frac{\omega_2}{\omega_1}=2 \cdot H_o \longrightarrow \omega_1=\frac{\omega_2}{2 \cdot H_o} = 51 \; \frac{rad}{s} </math>
 
}}
 
Határozza meg az erősítő kimeneti feszültségének várható szélső értékeit, ha az erősítő előzőleg ki lett ofszetelve, és az erősítő bemeneteire a következő feszültségeket kapcsoljuk:
 
<math>U_1 = 998 \; mV</math>
 
<math>U_2 = 1002 \; mV </math>
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
<math> U_{min}=\left( \frac{U_2-U_1}{2} \right) \cdot A_{Us} \cdot (1-|h_S|) + \left(  \frac{U_2+U_1}{2} \right) \cdot A_{Uk} \approx 200,598 \; V </math>
 
<math> U_{max}=\left( \frac{U_2-U_1}{2} \right) \cdot A_{Us} \cdot (1 + |h_S|) + \left(  \frac{U_2+U_1}{2} \right) \cdot A_{Uk} \approx 201,402 \; V </math>
 
}}
 
==7. A/D átalakító==
 
Adja meg egy A/D átalakító SINAD paraméterének számítási módját az idő és frekvenciatartományban!
 
Definiálja az összefüggésben szereplő mennyiségeket! Hasonlítsa össze a két számítási módszert!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Időtartomány:
Időtartomány:


<math> SINAD = 10log_{10} \frac{ \frac{A2}{2} }{ e_{RMS}^2 } </math>
<math> SINAD = 10 \cdot \log_{10} \left( \frac{ \frac{A2}{2} }{ e_{RMS}^2 } \right)</math>


<math> e_{RMS}^2 = \frac{1}{M} \sum_{n=0}^{M-1} [y(n) - x(n)]^2 </math>
<math> e_{RMS}^2 = \frac{1}{M} \cdot \sum_{n=0}^{M-1} \left[ y(n) - x(n) \right]^2 </math>


Frekvenciatartomány:


<math> SINAD = 10log_{10} \frac{|Y[J]|^2}{\sum_{k=1, k=J}^{M/2-1}(Y[k])^2+\frac{1}{2}|Y[M/2]|^2} </math>
J - alapharmonikus


==8.==
Frekvenciatartomány (J - alapharmonikus):
 
<math> SINAD = 10 \cdot \log_{10} \left( \frac{|Y[J]|^2}{\sum_{k=1, k=J}^{M/2-1}\limits \left(Y[k] \right)^2+\frac{1}{2} \cdot |Y[M/2]|^2}  \right)</math>
 
 
}}
 
==8. Fáziszárt hurok==
 
Fáziszárt hurkok esetében mit értünk befogási és követési tartomány alatt? Rajzoljon fel egy mérési elrendezést, amellyel meghatározhatja a befogási és követési tartományt!
Fáziszárt hurkok esetében mit értünk befogási és követési tartomány alatt? Rajzoljon fel egy mérési elrendezést, amellyel meghatározhatja a befogási és követési tartományt!


* befogási tartomány <math> 2\Delta \omega_h </math>: az a frekvenciatartomány, amelyen belülre kerülve a PLL képes elérni a fáziszárt állapotot.
{{Rejtett
* követési tartomány <math> 2\Delta \omega_p </math>: az a frekvenciatartomány, amelyen belül a PLL követni képes a bemeneti jel fázisát, miközben a bemeneti frekvencia az <math>\omega_0</math> frekvenciától távolodik. A követési tartományt a hurokelemek telítésbe jutása korlátozza.
|mutatott='''Megoldás'''
|szöveg=


{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|PLL_frek.JPG}}
[[File:Labor2_ZH_2004_ábra4.jpg|300px]]
{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|PLL.JPG}}


==9.==
<math>2 \Delta \omega_H</math> - '''Követési tartomány''' (HOLD-IN): Az a frekvenciatartomány, amelyen belül a PLL követni képes a bemeneti jel fázisát, miközben a bemeneti frekvencia az <math>\omega_0</math> frekvenciától távolodik. Ezt a követési tartományt a hurokelemek telítésbe jutása korlátozza.
Mit értünk szemábra alatt? Rajzoljon le egy tipikus szemábrát! Mitől "szűkűl" be egy szemábra?


Amennyiben az átviteli csatorna nem ideális, az elemi jel időfüggvénye torzulni fog. Ennek eredménye, hogy az egyes mintavételi helyeken nem csak az adott elemi jelnek lesznek hozzájárulása. Az ISI és a zaj az oszcilloszkópon láthatóvá tehető, ha a vett jelet 1/T<sub>b</sub> vízszintes eltérítési sebességgel ábrázoljuk.
<math>2 \Delta \omega_P</math> - '''Befogási tartomány''' (PULL-IN): Az a frekvencia tartomány, amelyen belülre kerülve a PLL képes elérni a fáziszárt állapotot.
 
 
[[File:Labor2_ZH_2004_ábra5.jpg|500px]]
 
}}
 
==9. Szemábra==
 
Mit értünk szemábra alatt? Rajzoljon le egy tipikus szemábrát! Mitől "szűkül" be egy szemábra?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Amennyiben az átviteli csatorna nem ideális, az elemi jel időfüggvénye torzulni fog. Ennek eredménye, hogy az egyes mintavételi helyeken nem csak az adott elemi jelnek lesznek hozzájárulása.
 
Az ISI és a zaj az oszcilloszkópon láthatóvá tehető, ha a vett jelet 1/T<sub>b</sub> vízszintes eltérítési sebességgel ábrázoljuk.


Torzítatlan jelalak esetén a vett jel valamennyi T<sub>b</sub> időtartamú szakaszát egymásra rajzoljuk, akkor nyitott szemet kapunk. Torzított esetben nem pontosan a +1 és -1 ponton halad át a jel, így a szem beszűkül, nehezebb lesz a jel detektálása.
Torzítatlan jelalak esetén a vett jel valamennyi T<sub>b</sub> időtartamú szakaszát egymásra rajzoljuk, akkor nyitott szemet kapunk. Torzított esetben nem pontosan a +1 és -1 ponton halad át a jel, így a szem beszűkül, nehezebb lesz a jel detektálása.


<br />
[[File:Labor2_ZH_2004_ábra6.jpg|900px]]
{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|szem.JPG}}
 
}}
 
==10. Állapotteres szabályozás==


==10.==
Adott egy folytonos idejű szakasz állapotteres leírása:
Adott egy folytonos idejű szakasz állapotteres leírása:


{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|labor2zh_2004_Aabra.jpg}}
[[File:Labor2_ZH_2004_ábra7.jpg|500px]]
 
A szakaszt <math>u=-Kx</math> állapot-visszacsatolással kompenzáljuk, ahol K = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A szakasz karakterisztikus egyenlete:
 
<math> \varphi (s) = det [sI-A] = \left[ \begin{array}{cc} s+1 & -2 \\ -1 & s \end{array} \right]</math> <math>= s^2+s-2=(s-1)\cdot(s+2)=0 </math>


A szakaszt u = -ky állapot-visszacsatolással kompenzáljuk, ahol k = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer?
Melynek gyökei a szakasz pólusai (sajátértékek), azaz <math>s_1=1</math> és <math>s_2=-2</math>. Mivel <math>s_1</math> valós része pozitív, ezért a szakasz instabil.


Karakterisztikus egyenlet:
<math> \varphi (s) = det [sI-A] = \left[ \begin{array}{cc} s+1 & -2 \\ -1 & s \end{array} \right]</math> <math>= s^2+s-2=(s-1)(s+2)=0 </math>,


melynek gyökei a szakasz pólusai (sajátértékek), azaz s<sub>1</sub>=1 és s<sub>2</sub>=-2. Mivel s<sub>1</sub> pozitív valós részű, ezért a szakasz instabil.
A zárt rendszer állapotegyenlete <math>u=-Kx</math> behelyettesítés után:


A zárt rendszer állapotegyenlete u=-Kx behelyettesítés után:
<math> \dot{x}=(A-B K)\cdot x </math>


<math> \dot{x}=(A-B\cdot K)x </math>
<math> y= C \cdot x </math>




<math> y= C \cdot x </math>,
A zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják:


ahol a zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják:
<math> (A-BK)= \left[ \begin{array}{cc} -3 & -2 \\ 1 & 0 \end{array} \right] </math>


<math> (A-BK)= \left[ \begin{array}{cc} -3 & -2 \\ -1 & 0 \end{array} \right] </math>
<math> \varphi_c(s) = det[sI-(A-B K)] = \left[ \begin{array}{cc} s+3 & 2 \\ -1 & s \end{array} \right] =s^2+3s+2=(s+1)(s+2) </math>.


<math> \varphi_c(s) = det[sI-(A-B \cdot K)] = \left[ \begin{array}{cc} s+3 & 2 \\ -1 & s \end{array} \right] =s^3+3s+2=(s+1)(s+2) </math>.


Azaz a pólusok -1 és -2, melyek negatív valós résszel rendelkeznek, így a rendszer stabil.
Azaz a pólusok -1 és -2, melyek negatív valós résszel rendelkeznek, így a rendszer stabil.
==11.==
 
}}
 
==11. Hőmérséklet-szabályozás==
 
Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját!
Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
[[File:Labor2_ZH_2014_ábra8.JPG|600px]]
A jelek elnevezései és dimenziói:
*<math>r</math> - Alapjel <math>[C^{\circ}]</math>
*<math>u</math> - Vezérlőjel <math>[V]</math>
*<math>u_{k}</math> - Korlátozott vezérlőjel <math>[V]</math>
*<math>\vartheta</math> - Hőmérséklet <math>[C^{\circ}]</math>
}}
[[Kategória:Villamosmérnök]]

A lap jelenlegi, 2016. május 9., 15:11-kori változata


1. Erősítő kapcsolás

Adott az alábbi kapcsolás:

Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R3 = 18 kOhm

Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén!

Megoldás

Határozza meg R3 optimális értékét!

Megoldás

2. NYÁK tervezés

A NYÁK-tervező programok milyen nézetben (alul/felül) ábrázolják a NYÁK-rétegeket? (A legalsó réteget honnan látja a tervező: felülről, a felső réteg felől, vagy alulról?)

Megoldás

Mi a Gerber-file?

Megoldás

Soroljon fel három NYÁK-tervezési ökölszabályt!

Megoldás

Mi a via és a pin?

Megoldás

3. Hálózati szűrő

Egy hálózati szűrő kapcsolási rajza az alábbi ábrán látható:

Adja meg a szűrő aszimmetrikus zavarjelre vonatkozó érvényes modelljét! Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelekre!

Megoldás

4. Hall-szondás árammérő

Írja le a váltakozó áramú árammérő lakatfogó és egyenáramon is használható Hall-szondás árammérő lakatfogó működési elvét!

Megoldás

5-6. Mérőerősítő

Az alábbi ábrán egy mérőerősítő elvi kapcsolási rajza látható.

Az ellenállások adatai:

R11=R12=10kΩ
R21=R22=490kΩ
h=0,1% - Az ellenállások tűrése


Az erősítő adatai:

Aus0=100VmV
Ekv,min=100dB
f2=10MHz - Az egységnyi erősítéshez tartozó határfrekvencia
φ=45 - Fázistartalék


Határozza meg a fenti kapcsolás:

  • (a) eredő szimmetrikus feszültségerősítését
  • (b) az erősítés statikus hibáját
  • (c) közös feszültségerősítését
  • (d) eredő (-3 dB-es) felső határfrekvenciáját!
Megoldás

Határozza meg a domináns pólus törésponti frekvenciáját úgy, hogy a visszacsatolt erősítő amplitudómenete maximálisan lapos legyen!

Megoldás

Határozza meg az erősítő kimeneti feszültségének várható szélső értékeit, ha az erősítő előzőleg ki lett ofszetelve, és az erősítő bemeneteire a következő feszültségeket kapcsoljuk:

U1=998mV

U2=1002mV

Megoldás

7. A/D átalakító

Adja meg egy A/D átalakító SINAD paraméterének számítási módját az idő és frekvenciatartományban!

Definiálja az összefüggésben szereplő mennyiségeket! Hasonlítsa össze a két számítási módszert!

Megoldás

8. Fáziszárt hurok

Fáziszárt hurkok esetében mit értünk befogási és követési tartomány alatt? Rajzoljon fel egy mérési elrendezést, amellyel meghatározhatja a befogási és követési tartományt!

Megoldás

9. Szemábra

Mit értünk szemábra alatt? Rajzoljon le egy tipikus szemábrát! Mitől "szűkül" be egy szemábra?

Megoldás

10. Állapotteres szabályozás

Adott egy folytonos idejű szakasz állapotteres leírása:

A szakaszt u=Kx állapot-visszacsatolással kompenzáljuk, ahol K = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer?

Megoldás

11. Hőmérséklet-szabályozás

Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját!

Megoldás