„Laboratórium 2 - ZH, 2004 tavasz” változatai közötti eltérés

A VIK Wikiből
aNincs szerkesztési összefoglaló
 
(19 közbenső módosítás, amit 4 másik szerkesztő végzett, nincs mutatva)
3. sor: 3. sor:
<div class="noautonum">__TOC__</div>
<div class="noautonum">__TOC__</div>


==1.==
==1. Erősítő kapcsolás==
 
Adott az alábbi kapcsolás:
Adott az alábbi kapcsolás:


{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|labor2zh_2004_1abra.jpg}}
[[File:Labor2_ZH_2004_ábra1.jpg|400px]]


Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R1 = 18 kOhm
Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R3 = 18 kOhm
    
    
* Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén!
Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
<math> A_u=-\frac{R_2}{|R_1+\frac{1}{j\omega C}|} </math>
<math> A_u=-\frac{R_2}{|R_1+\frac{1}{j\omega C}|} </math>


<math> |\frac{1}{j\omega C}|=\frac{1}{2\pi fC}=234 \Omega</math>


<math> 234 \Omega << R_1</math>
<math> \left| \frac{1}{j\omega C} \right| =\frac{1}{2\pi fC}=234 \; \Omega</math>
 
 
<math> 234 \; \Omega << R_1</math>
 
 
<math> A_{u,10kHz}=-\frac{190k}{16k}=-11,87</math>
 
}}
 
Határozza meg R3 optimális értékét!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


<math> A_{u10kHz}=-\frac{190k}{16k}=-11,87</math>
<math> R_3=R_1 \times R_2 = 14,757 \; k\Omega </math>


* Határozza meg R3 optimális értékét!
}}


<math> R_3=R_1 X R_2 = 14,757k\Omega </math>
==2. NYÁK tervezés==
A NYÁK-tervező programok milyen nézetben (alul/felül) ábrázolják a NYÁK-rétegeket? (A legalsó réteget honnan látja a tervező: felülről, a felső réteg felől, vagy alulról?)
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


==2.==
* A NYÁK-tervező programok milyen nézetben (alul/felül) ábrázolják a NYÁK-rétegeket? (A legalsó réteget honnan látja a tervező: felülről, a felső réteg felől, vagy alulról?)
Általában felülnézetből. Néhány program lehetőséget ad arra, hogy az elkészült NYÁK-ot forgassuk és minden irányból megszemléljük.
Általában felülnézetből. Néhány program lehetőséget ad arra, hogy az elkészült NYÁK-ot forgassuk és minden irányból megszemléljük.


* Mi a Gerber-file?
}}
 
Mi a Gerber-file?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A gyártósorok közvetlen vezérlésére szolgáló fájltípus. Ez az egyik legelterjedtebb fájltípus erre a célra.
A gyártósorok közvetlen vezérlésére szolgáló fájltípus. Ez az egyik legelterjedtebb fájltípus erre a célra.


* Soroljon fel három NYÁK-tervezési ökölszabályt!
}}
A vezetékeink legyenek 8mil-nél vastagabbak, a tápvezetékek legyenek a jelvezetékeknél 4-5-ször vastagabbak, lehetőleg ne használjunk 0,6mm-nél vékonyabb furatokat, a furatok szélesebbek legyenek, mint a beléjük helyezendő alkatrészlábak (0,1-0,2 mm-rel), panel széléhez 1 raszternél közelebb ne tegyünk furatot, vezetéket ne derékszögben, hanem csak <math>135^o</math>-ban hajlítsuk, használjunk szabványos furatátmérőket.
 
Soroljon fel három NYÁK-tervezési ökölszabályt!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


* Mi a via és a pin?  
*A vezetékeink legyenek 8 mil-nél vastagabbak.
*Via*: két vezetékezési réteg között fémes kontaktust teremtő furat
*A tápvezetékek legyenek a jelvezetékeknél 4-5-ször vastagabbak.
*Pin*: pinnek nevezzük egy huzalozás végpontját a kapcoslási rajzon és a huzalozási rajzon egyaránt. Általában ez egy alkatrészláb szokott lenni, de lehet akár egy mérőpont is.
*Lehetőleg ne használjunk 0,6 mm-nél vékonyabb furatokat.
*A furatok szélesebbek legyenek, mint a beléjük helyezendő alkatrészlábak (0,1-0,2 mm-rel).
*A panel széléhez 1 raszternél közelebb ne tegyünk furatot.
*A vezetéket ne derékszögben, hanem csak 135°-ban hajlítsuk.
*Használjunk szabványos furatátmérőket.
 
}}
 
Mi a via és a pin?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
*Via: Két vezetékezési réteg között fémes kontaktust teremtő furat.
*Pin: Pinnek nevezzük egy huzalozás végpontját a kapcsolási rajzon és a huzalozási rajzon egyaránt. Általában ez egy alkatrészláb szokott lenni, de lehet akár egy mérőpont is.
 
}}
 
==3. Hálózati szűrő==


==3.==
Egy hálózati szűrő kapcsolási rajza az alábbi ábrán látható:
Egy hálózati szűrő kapcsolási rajza az alábbi ábrán látható:


{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|labor2zh_2004_3abra.jpg}}
[[File:Labor2_ZH_2004_ábra2.jpg|350px]]


Adja meg a szűrő asszimetrikus zavarjelre vonatkozó érvényes modelljét! Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelekre!
Adja meg a szűrő aszimmetrikus zavarjelre vonatkozó érvényes modelljét! Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelekre!


* aszimmetrikus -> közös módusú
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
* Aszimmetrikus <math>\longrightarrow</math> közös módusú
* <math>C_x</math> rövidre van zárva
* <math>C_x</math> rövidre van zárva
* a két tekercs párhuzamosan van kapcsolva, vasmagjuk közös -> 1db L induktivitású, dupla vezetékvastagságú tekercsként modellezhető
* A két tekercs párhuzamosan van kapcsolva, vasmagjuk közös <math>\longrightarrow</math> 1db L induktivitású, dupla vezetékvastagságú tekercsként modellezhető
* a két <math>C_y</math> az <math>U_{szOUT}</math> és a föld közé párhuzamosan van kapcsolva -> <math> 2C_y</math>
* A két <math>C_y</math> az <math>U_{szOUT}</math> és a föld közé párhuzamosan van kapcsolva <math>\longrightarrow</math> <math> 2 \cdot C_y</math>


<math>
A_{uk}= \frac{\frac{1}{s2C_y}}{\frac{1}{s2C_y}+sL} = \frac{1}{1+s^22C_yL}
</math>


azaz a csillapítás:
:<math>A_{uk}= \frac{\frac{1}{s2C_y}}{\frac{1}{s2C_y}+sL} = \frac{1}{1+s^22C_yL}</math>
<math> \frac{1}{A_{uk}}=1+s^22C_yL </math>
==4.==
Írja le a váltkaozó áramú árammérő lakatfogó és egyenáramon is használható Hall-szondás árammérő lakatfogó működési elvét!


A lakatfogó egy olyan áramváltónak tekinthető, melynek primer tekercse 1 menetszámú. (Ez az a vezeték melynek áramát mérni szeretnénk.( A szekunder tekercs pedig egy zárt, de egy ponton nyitható vasmagra van csévélve. Az I áram a vezetékre koncentrikus H-t kelt. Az a közegben B-t hoz létre, amely a szekunder tekercsben fesüzltséget indukál (RAJZ!)


<math> \frac{N_2}{N_1}=\frac{I_1}{I_2} \rightarrow N_2=\frac{I_1}{I_2} \rightarrow I_1=N_2 \cdot I_2</math>
:Tehát a szűrő aszimmetrikus zavarjelekre vonatkozó csillapítása:


A Hall szondás műszer azon elven alapszik, hogy ha egy félvezetőben áram folyik, arra merőlegesen pedig mágneses tér van, akkor mindezekre merőlegesen a szonda két lapja között fesüzltség esik, a Hall fesüzltség. (RAJZ!) U ~ B\cdot I
:<math> \frac{1}{A_{uk}}=1+s^22C_yL </math>
 
}}
 
==4. Hall-szondás árammérő==
 
Írja le a váltakozó áramú árammérő lakatfogó és egyenáramon is használható Hall-szondás árammérő lakatfogó működési elvét!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A lakatfogó egy olyan áramváltónak tekinthető, melynek primer tekercse 1 menetszámú. Ez az a vezeték melynek áramát mérni szeretnénk. A szekunder tekercs pedig egy zárt, de egy ponton nyitható vasmagra van csévélve. Az I áram a vezetékre koncentrikus H mágneses térerősséget kelt, ami közegben azonos irányú B mágneses indukciót hoz létre, amely a szekunder tekercsben feszültséget indukál - RAJZ!
 
 
<math> \frac{N_2}{N_1}=\frac{I_1}{I_2} \longrightarrow N_2=\frac{I_1}{I_2} \longrightarrow I_1=N_2 \cdot I_2</math>
 
 
A Hall-szondás műszer azon elven alapszik, hogyha egy félvezetőben áram folyik, arra merőlegesen pedig mágneses tér van, akkor mindezekre merőlegesen a szonda két lapja között feszültség esik - RAJZ! A Hall-feszültség: <math> U \sim B\cdot I </math>
 
}}
 
==5-6. Mérőerősítő==


==5-6.==
Az alábbi ábrán egy mérőerősítő elvi kapcsolási rajza látható.
Az alábbi ábrán egy mérőerősítő elvi kapcsolási rajza látható.


{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|labor2zh_2004_56abra.jpg}}
[[File:Labor2_ZH_2004_ábra3.jpg|350px]]
 
Az ellenállások adatai:
 
:<math>R_{11} = R_{12} = 10 \; k\Omega</math>
 
:<math>R_{21} = R_{22} = 490 \; k\Omega</math>
 
:<math>h = 0,1 \%</math> - Az ellenállások tűrése
 


Az alkatrészek adatai: R11 = R12 = 10kOhm, R21 = R22 = 490 kOhm, tűrésük h = 0,1%. Az erősítő adatai: Aus0 = 100 V/mV, Ekv,min = 100 dB. Az egységnyi erősítéshez tartozó határfrekvencia f2 = 10 Mhz, a fázistartalék fí = 45 fok.
Az erősítő adatai:


* Határozza meg a fenti kapcsolás (a) eredő szimmetrikus feszültségerősítését, (b) az erősítés statikus hibáját, (c) közös feszültségerősítését, (d) eredő (-3 dB-es) felső határfrekvenciáját!
:<math>A_{us0} = 100 \; {V \over mV}</math>
 
:<math>E_{kv,min} = 100 \;dB</math>
 
:<math>f_2 = 10 \; MHz</math> - Az egységnyi erősítéshez tartozó határfrekvencia
 
:<math>\varphi = 45^{\circ}</math> - Fázistartalék
 
 
Határozza meg a fenti kapcsolás:
*(a) eredő szimmetrikus feszültségerősítését
*(b) az erősítés statikus hibáját
*(c) közös feszültségerősítését
*(d) eredő (-3 dB-es) felső határfrekvenciáját!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Eredő szimmetrikus feszültségerősítés:
Eredő szimmetrikus feszültségerősítés:
<math> A_U = - \frac{R_{21}}{R_{11}} = -49 </math>
<math> A_U = - \frac{R_{21}}{R_{11}} = -49 </math>


Erősítés statikus hibája:
Erősítés statikus hibája:
<math> h_S=|h_{R_1}|+|h_{R_2}|+|h_H|=2\cdot 0,001+\frac{1}{H_o} </math>


<math> H_o = A_o \cdot {\beta}_o = 10^5 \cdot \frac{R_{21}}{R_{21}+R_{11}}; \frac{1}{H_o} = 10^{-5} </math>
<math> h_S=|h_{R_1}|+|h_{R_2}|+|h_H|=2\cdot 0,001+\frac{1}{H_o} = 0,002+0,00001 = 0,00201</math>
 
<math> H_o = A_o \cdot {\beta}_o = 10^5 \cdot \frac{R_{21}}{R_{21}+R_{11}} \longrightarrow \frac{1}{H_o} \approx 10^{-5} </math>
 


Közös feszültségerősítés:
Közös feszültségerősítés:


<math> E_{Uk} = 100dB </math> és <math> A_{US} = 10^5 </math> , így A<sub>US</sub> = A<sub>Uk</sub> + 100dB és <math> 20 log_{10}10^5 = 100dB; A_{Uk} = 0dB </math>.
<math> E_{Uk} = 100 \; dB </math>
 
<math> A_{Us} = 10^5 = 20 \cdot \log_{10} \left( 10^5  \right) \; dB= 100 \; dB</math>
 
<math>E_{Uk} = A_{Us} - A_{Uk} \longrightarrow A_{Uk} = A_{Us} - E_{Uk} = 100 \; dB - 100 \; dB = 0 \; dB</math>
 
 
Eredő (-3 dB-es) felső határfrekvencia:
 
<math> f_e = f_2 \cdot (1+H_o) \approx 10 \; MHz \cdot 10^5 = 1 \; THz </math>
 
}}
 
Határozza meg a domináns pólus törésponti frekvenciáját úgy, hogy a visszacsatolt erősítő amplitudómenete maximálisan lapos legyen!


Eredő (-3 dB-es) felső határfrekvencia: <math> f_e = f_2 (1+H_o) = 10MHz \cdot 10^5 = 1THz </math>
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


(Invertáló erősítőfokozathoz hasonló.)
<math> Q=\frac{1}{\sqrt{2}}</math>


* Határozza meg a domináns pólus törésponti frekvenciáját úgy, hogy a visszacsatolt erősítő amplitudómenete maximálisan lapos legyen!
<math> \frac{\omega_2}{\omega_1}=2 \cdot H_o \longrightarrow \omega_1=\frac{\omega_2}{2 \cdot H_o} = 51 \; \frac{rad}{s} </math>


<math> Q=\frac{1}{\sqrt{2}}</math>; <math> \frac{\omega_2}{\omega_1}=2H_o \rightarrow \omega_1=\frac{\omega_2}{2H_o} = 51\frac{rad}{s} </math>
}}


* Határozza meg az erősítő kimeneti feszültségének várható szélső értékeit, ha az erősítő előzőleg ki lett ofszetelve, és az erősítő bemeneteire a következő feszültségeket kapcsoljuk: U1 = 998 mV, U2 = 1002 mV!
Határozza meg az erősítő kimeneti feszültségének várható szélső értékeit, ha az erősítő előzőleg ki lett ofszetelve, és az erősítő bemeneteire a következő feszültségeket kapcsoljuk:


<math> U_{min}=( \frac{U_2-U_1}{2} ) A_{US} \cdot (1-|h_S|) + \frac{U_2+U_1}{2} A_{Uk} </math>
<math>U_1 = 998 \; mV</math>


<math> U_{max}=( \frac{U_2-U_1}{2} ) A_{US} \cdot (1 + |h_S|) + \frac{U_2+U_1}{2} A_{Uk} </math>
<math>U_2 = 1002 \; mV </math>  


==7. ==
{{Rejtett
Adja meg egy A/D átalakító SINAD paraméterének számítási módját az idő és frekvenciatartományban! Definiálja az összefüggésben szereplő mennyiségeket! Hasonlítsa össze a két számítási módszert!
|mutatott='''Megoldás'''
|szöveg=
 
<math> U_{min}=\left( \frac{U_2-U_1}{2} \right) \cdot A_{Us} \cdot (1-|h_S|) + \left(  \frac{U_2+U_1}{2} \right) \cdot A_{Uk} \approx 200,598 \; V </math>
 
<math> U_{max}=\left( \frac{U_2-U_1}{2} \right) \cdot A_{Us} \cdot (1 + |h_S|) + \left(  \frac{U_2+U_1}{2} \right) \cdot A_{Uk} \approx 201,402 \; V </math>
 
}}
 
==7. A/D átalakító==
 
Adja meg egy A/D átalakító SINAD paraméterének számítási módját az idő és frekvenciatartományban!
 
Definiálja az összefüggésben szereplő mennyiségeket! Hasonlítsa össze a két számítási módszert!
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=


Időtartomány:
Időtartomány:


<math> SINAD = 10log_{10} \frac{ \frac{A2}{2} }{ e_{RMS}^2 } </math>
<math> SINAD = 10 \cdot \log_{10} \left( \frac{ \frac{A2}{2} }{ e_{RMS}^2 } \right)</math>


<math> e_{RMS}^2 = \frac{1}{M} \sum_{n=0}^{M-1} [y(n) - x(n)]^2 </math>
<math> e_{RMS}^2 = \frac{1}{M} \cdot \sum_{n=0}^{M-1} \left[ y(n) - x(n) \right]^2 </math>


Frekvenciatartomány:


<math> SINAD = 10log_{10} \frac{|Y[J]|^2}{\sum_{k=1, k=J}^{M/2-1}(Y[k])^2+\frac{1}{2}|Y[M/2]|^2} </math>
J - alapharmonikus


==8.==
Frekvenciatartomány (J - alapharmonikus):
 
<math> SINAD = 10 \cdot \log_{10} \left( \frac{|Y[J]|^2}{\sum_{k=1, k=J}^{M/2-1}\limits \left(Y[k] \right)^2+\frac{1}{2} \cdot |Y[M/2]|^2}  \right)</math>
 
 
}}
 
==8. Fáziszárt hurok==
 
Fáziszárt hurkok esetében mit értünk befogási és követési tartomány alatt? Rajzoljon fel egy mérési elrendezést, amellyel meghatározhatja a befogási és követési tartományt!
Fáziszárt hurkok esetében mit értünk befogási és követési tartomány alatt? Rajzoljon fel egy mérési elrendezést, amellyel meghatározhatja a befogási és követési tartományt!


* befogási tartomány <math> 2\Delta \omega_h </math>: az a frekvenciatartomány, amelyen belülre kerülve a PLL képes elérni a fáziszárt állapotot.
{{Rejtett
* követési tartomány <math> 2\Delta \omega_p </math>: az a frekvenciatartomány, amelyen belül a PLL követni képes a bemeneti jel fázisát, miközben a bemeneti frekvencia az <math>\omega_0</math> frekvenciától távolodik. A követési tartományt a hurokelemek telítésbe jutása korlátozza.
|mutatott='''Megoldás'''
|szöveg=


{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|PLL_frek.JPG}}
[[File:Labor2_ZH_2004_ábra4.jpg|300px]]
{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|PLL.JPG}}


==9.==
<math>2 \Delta \omega_H</math> - '''Követési tartomány''' (HOLD-IN): Az a frekvenciatartomány, amelyen belül a PLL követni képes a bemeneti jel fázisát, miközben a bemeneti frekvencia az <math>\omega_0</math> frekvenciától távolodik. Ezt a követési tartományt a hurokelemek telítésbe jutása korlátozza.
Mit értünk szemábra alatt? Rajzoljon le egy tipikus szemábrát! Mitől "szűkűl" be egy szemábra?


Amennyiben az átviteli csatorna nem ideális, az elemi jel időfüggvénye torzulni fog. Ennek eredménye, hogy az egyes mintavételi helyeken nem csak az adott elemi jelnek lesznek hozzájárulása. Az ISI és a zaj az oszcilloszkópon láthatóvá tehető, ha a vett jelet 1/T<sub>b</sub> vízszintes eltérítési sebességgel ábrázoljuk.
<math>2 \Delta \omega_P</math> - '''Befogási tartomány''' (PULL-IN): Az a frekvencia tartomány, amelyen belülre kerülve a PLL képes elérni a fáziszárt állapotot.
 
 
[[File:Labor2_ZH_2004_ábra5.jpg|500px]]
 
}}
 
==9. Szemábra==
 
Mit értünk szemábra alatt? Rajzoljon le egy tipikus szemábrát! Mitől "szűkül" be egy szemábra?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
Amennyiben az átviteli csatorna nem ideális, az elemi jel időfüggvénye torzulni fog. Ennek eredménye, hogy az egyes mintavételi helyeken nem csak az adott elemi jelnek lesznek hozzájárulása.
 
Az ISI és a zaj az oszcilloszkópon láthatóvá tehető, ha a vett jelet 1/T<sub>b</sub> vízszintes eltérítési sebességgel ábrázoljuk.


Torzítatlan jelalak esetén a vett jel valamennyi T<sub>b</sub> időtartamú szakaszát egymásra rajzoljuk, akkor nyitott szemet kapunk. Torzított esetben nem pontosan a +1 és -1 ponton halad át a jel, így a szem beszűkül, nehezebb lesz a jel detektálása.
Torzítatlan jelalak esetén a vett jel valamennyi T<sub>b</sub> időtartamú szakaszát egymásra rajzoljuk, akkor nyitott szemet kapunk. Torzított esetben nem pontosan a +1 és -1 ponton halad át a jel, így a szem beszűkül, nehezebb lesz a jel detektálása.


<br />
[[File:Labor2_ZH_2004_ábra6.jpg|900px]]
{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|szem.JPG}}
 
}}
 
==10. Állapotteres szabályozás==


==10.==
Adott egy folytonos idejű szakasz állapotteres leírása:
Adott egy folytonos idejű szakasz állapotteres leírása:


{{InLineImageLink|Villanyalap|Labor2ZhSegitseg|labor2zh_2004_Aabra.jpg}}
[[File:Labor2_ZH_2004_ábra7.jpg|500px]]
 
A szakaszt <math>u=-Kx</math> állapot-visszacsatolással kompenzáljuk, ahol K = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer?
 
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
 
A szakasz karakterisztikus egyenlete:


A szakaszt u = -ky állapot-visszacsatolással kompenzáljuk, ahol k = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer?
<math> \varphi (s) = det [sI-A] = \left[ \begin{array}{cc} s+1 & -2 \\ -1 & s \end{array} \right]</math> <math>= s^2+s-2=(s-1)\cdot(s+2)=0 </math>


Karakterisztikus egyenlet:
Melynek gyökei a szakasz pólusai (sajátértékek), azaz <math>s_1=1</math> és <math>s_2=-2</math>. Mivel <math>s_1</math> valós része pozitív, ezért a szakasz instabil.
<math> \varphi (s) = det [sI-A] = \left[ \begin{array}{cc} s+1 & -2 \\ -1 & s \end{array} \right]</math> <math>= s^2+s-2=(s-1)(s+2)=0 </math>,


melynek gyökei a szakasz pólusai (sajátértékek), azaz s<sub>1</sub>=1 és s<sub>2</sub>=-2. Mivel s<sub>1</sub> pozitív valós részű, ezért a szakasz instabil.


A zárt rendszer állapotegyenlete u=-Kx behelyettesítés után:
A zárt rendszer állapotegyenlete <math>u=-Kx</math> behelyettesítés után:


<math> \dot{x}=(A-B\cdot K)x </math>
<math> \dot{x}=(A-B K)\cdot x </math>


<math> y= C \cdot x </math>


<math> y= C \cdot x </math>,


ahol a zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják:
A zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják:


<math> (A-BK)= \left[ \begin{array}{cc} -3 & -2 \\ -1 & 0 \end{array} \right] </math>
<math> (A-BK)= \left[ \begin{array}{cc} -3 & -2 \\ 1 & 0 \end{array} \right] </math>
 
<math> \varphi_c(s) = det[sI-(A-B K)] = \left[ \begin{array}{cc} s+3 & 2 \\ -1 & s \end{array} \right] =s^2+3s+2=(s+1)(s+2) </math>.


<math> \varphi_c(s) = det[sI-(A-B \cdot K)] = \left[ \begin{array}{cc} s+3 & 2 \\ -1 & s \end{array} \right] =s^3+3s+2=(s+1)(s+2) </math>.


Azaz a pólusok -1 és -2, melyek negatív valós résszel rendelkeznek, így a rendszer stabil.
Azaz a pólusok -1 és -2, melyek negatív valós résszel rendelkeznek, így a rendszer stabil.
==11.==
 
}}
 
==11. Hőmérséklet-szabályozás==
 
Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját!
Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
[[File:Labor2_ZH_2014_ábra8.JPG|600px]]
A jelek elnevezései és dimenziói:
*<math>r</math> - Alapjel <math>[C^{\circ}]</math>
*<math>u</math> - Vezérlőjel <math>[V]</math>
*<math>u_{k}</math> - Korlátozott vezérlőjel <math>[V]</math>
*<math>\vartheta</math> - Hőmérséklet <math>[C^{\circ}]</math>
}}
[[Kategória:Villamosmérnök]]

A lap jelenlegi, 2016. május 9., 15:11-kori változata


1. Erősítő kapcsolás

Adott az alábbi kapcsolás:

Labor2 ZH 2004 ábra1.jpg

Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R3 = 18 kOhm

Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén!

Megoldás

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_u=-\frac{R_2}{|R_1+\frac{1}{j\omega C}|} }


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left| \frac{1}{j\omega C} \right| =\frac{1}{2\pi fC}=234 \; \Omega}


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 234 \; \Omega << R_1}


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_{u,10kHz}=-\frac{190k}{16k}=-11,87}

Határozza meg R3 optimális értékét!

Megoldás
Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle R_3=R_1 \times R_2 = 14,757 \; k\Omega }

2. NYÁK tervezés

A NYÁK-tervező programok milyen nézetben (alul/felül) ábrázolják a NYÁK-rétegeket? (A legalsó réteget honnan látja a tervező: felülről, a felső réteg felől, vagy alulról?)

Megoldás
Általában felülnézetből. Néhány program lehetőséget ad arra, hogy az elkészült NYÁK-ot forgassuk és minden irányból megszemléljük.

Mi a Gerber-file?

Megoldás
A gyártósorok közvetlen vezérlésére szolgáló fájltípus. Ez az egyik legelterjedtebb fájltípus erre a célra.

Soroljon fel három NYÁK-tervezési ökölszabályt!

Megoldás
  • A vezetékeink legyenek 8 mil-nél vastagabbak.
  • A tápvezetékek legyenek a jelvezetékeknél 4-5-ször vastagabbak.
  • Lehetőleg ne használjunk 0,6 mm-nél vékonyabb furatokat.
  • A furatok szélesebbek legyenek, mint a beléjük helyezendő alkatrészlábak (0,1-0,2 mm-rel).
  • A panel széléhez 1 raszternél közelebb ne tegyünk furatot.
  • A vezetéket ne derékszögben, hanem csak 135°-ban hajlítsuk.
  • Használjunk szabványos furatátmérőket.

Mi a via és a pin?

Megoldás
  • Via: Két vezetékezési réteg között fémes kontaktust teremtő furat.
  • Pin: Pinnek nevezzük egy huzalozás végpontját a kapcsolási rajzon és a huzalozási rajzon egyaránt. Általában ez egy alkatrészláb szokott lenni, de lehet akár egy mérőpont is.

3. Hálózati szűrő

Egy hálózati szűrő kapcsolási rajza az alábbi ábrán látható:

Labor2 ZH 2004 ábra2.jpg

Adja meg a szűrő aszimmetrikus zavarjelre vonatkozó érvényes modelljét! Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelekre!

Megoldás
  • Aszimmetrikus Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \longrightarrow} közös módusú
  • Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C_x} rövidre van zárva
  • A két tekercs párhuzamosan van kapcsolva, vasmagjuk közös Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \longrightarrow} 1db L induktivitású, dupla vezetékvastagságú tekercsként modellezhető
  • A két Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C_y} az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_{szOUT}} és a föld közé párhuzamosan van kapcsolva Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \longrightarrow} Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 \cdot C_y}


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_{uk}= \frac{\frac{1}{s2C_y}}{\frac{1}{s2C_y}+sL} = \frac{1}{1+s^22C_yL}}


Tehát a szűrő aszimmetrikus zavarjelekre vonatkozó csillapítása:


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{A_{uk}}=1+s^22C_yL }

4. Hall-szondás árammérő

Írja le a váltakozó áramú árammérő lakatfogó és egyenáramon is használható Hall-szondás árammérő lakatfogó működési elvét!

Megoldás

A lakatfogó egy olyan áramváltónak tekinthető, melynek primer tekercse 1 menetszámú. Ez az a vezeték melynek áramát mérni szeretnénk. A szekunder tekercs pedig egy zárt, de egy ponton nyitható vasmagra van csévélve. Az I áram a vezetékre koncentrikus H mágneses térerősséget kelt, ami közegben azonos irányú B mágneses indukciót hoz létre, amely a szekunder tekercsben feszültséget indukál - RAJZ!


Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{N_2}{N_1}=\frac{I_1}{I_2} \longrightarrow N_2=\frac{I_1}{I_2} \longrightarrow I_1=N_2 \cdot I_2}


A Hall-szondás műszer azon elven alapszik, hogyha egy félvezetőben áram folyik, arra merőlegesen pedig mágneses tér van, akkor mindezekre merőlegesen a szonda két lapja között feszültség esik - RAJZ! A Hall-feszültség: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U \sim B\cdot I }

5-6. Mérőerősítő

Az alábbi ábrán egy mérőerősítő elvi kapcsolási rajza látható.

Labor2 ZH 2004 ábra3.jpg

Az ellenállások adatai:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle R_{11} = R_{12} = 10 \; k\Omega}
Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle R_{21} = R_{22} = 490 \; k\Omega}
Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h = 0,1 \%} - Az ellenállások tűrése


Az erősítő adatai:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_{us0} = 100 \; {V \over mV}}
Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle E_{kv,min} = 100 \;dB}
Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f_2 = 10 \; MHz} - Az egységnyi erősítéshez tartozó határfrekvencia
Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi = 45^{\circ}} - Fázistartalék


Határozza meg a fenti kapcsolás:

  • (a) eredő szimmetrikus feszültségerősítését
  • (b) az erősítés statikus hibáját
  • (c) közös feszültségerősítését
  • (d) eredő (-3 dB-es) felső határfrekvenciáját!
Megoldás

Eredő szimmetrikus feszültségerősítés:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_U = - \frac{R_{21}}{R_{11}} = -49 }


Erősítés statikus hibája:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h_S=|h_{R_1}|+|h_{R_2}|+|h_H|=2\cdot 0,001+\frac{1}{H_o} = 0,002+0,00001 = 0,00201}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H_o = A_o \cdot {\beta}_o = 10^5 \cdot \frac{R_{21}}{R_{21}+R_{11}} \longrightarrow \frac{1}{H_o} \approx 10^{-5} }


Közös feszültségerősítés:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle E_{Uk} = 100 \; dB }

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A_{Us} = 10^5 = 20 \cdot \log_{10} \left( 10^5 \right) \; dB= 100 \; dB}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle E_{Uk} = A_{Us} - A_{Uk} \longrightarrow A_{Uk} = A_{Us} - E_{Uk} = 100 \; dB - 100 \; dB = 0 \; dB}


Eredő (-3 dB-es) felső határfrekvencia:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f_e = f_2 \cdot (1+H_o) \approx 10 \; MHz \cdot 10^5 = 1 \; THz }

Határozza meg a domináns pólus törésponti frekvenciáját úgy, hogy a visszacsatolt erősítő amplitudómenete maximálisan lapos legyen!

Megoldás

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Q=\frac{1}{\sqrt{2}}}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\omega_2}{\omega_1}=2 \cdot H_o \longrightarrow \omega_1=\frac{\omega_2}{2 \cdot H_o} = 51 \; \frac{rad}{s} }

Határozza meg az erősítő kimeneti feszültségének várható szélső értékeit, ha az erősítő előzőleg ki lett ofszetelve, és az erősítő bemeneteire a következő feszültségeket kapcsoljuk:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_1 = 998 \; mV}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_2 = 1002 \; mV }

Megoldás

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_{min}=\left( \frac{U_2-U_1}{2} \right) \cdot A_{Us} \cdot (1-|h_S|) + \left( \frac{U_2+U_1}{2} \right) \cdot A_{Uk} \approx 200,598 \; V }

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_{max}=\left( \frac{U_2-U_1}{2} \right) \cdot A_{Us} \cdot (1 + |h_S|) + \left( \frac{U_2+U_1}{2} \right) \cdot A_{Uk} \approx 201,402 \; V }

7. A/D átalakító

Adja meg egy A/D átalakító SINAD paraméterének számítási módját az idő és frekvenciatartományban!

Definiálja az összefüggésben szereplő mennyiségeket! Hasonlítsa össze a két számítási módszert!

Megoldás

Időtartomány:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle SINAD = 10 \cdot \log_{10} \left( \frac{ \frac{A2}{2} }{ e_{RMS}^2 } \right)}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle e_{RMS}^2 = \frac{1}{M} \cdot \sum_{n=0}^{M-1} \left[ y(n) - x(n) \right]^2 }


Frekvenciatartomány (J - alapharmonikus):

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle SINAD = 10 \cdot \log_{10} \left( \frac{|Y[J]|^2}{\sum_{k=1, k=J}^{M/2-1}\limits \left(Y[k] \right)^2+\frac{1}{2} \cdot |Y[M/2]|^2} \right)}

8. Fáziszárt hurok

Fáziszárt hurkok esetében mit értünk befogási és követési tartomány alatt? Rajzoljon fel egy mérési elrendezést, amellyel meghatározhatja a befogási és követési tartományt!

Megoldás

Labor2 ZH 2004 ábra4.jpg

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 \Delta \omega_H} - Követési tartomány (HOLD-IN): Az a frekvenciatartomány, amelyen belül a PLL követni képes a bemeneti jel fázisát, miközben a bemeneti frekvencia az Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega_0} frekvenciától távolodik. Ezt a követési tartományt a hurokelemek telítésbe jutása korlátozza.

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2 \Delta \omega_P} - Befogási tartomány (PULL-IN): Az a frekvencia tartomány, amelyen belülre kerülve a PLL képes elérni a fáziszárt állapotot.


Labor2 ZH 2004 ábra5.jpg

9. Szemábra

Mit értünk szemábra alatt? Rajzoljon le egy tipikus szemábrát! Mitől "szűkül" be egy szemábra?

Megoldás

Amennyiben az átviteli csatorna nem ideális, az elemi jel időfüggvénye torzulni fog. Ennek eredménye, hogy az egyes mintavételi helyeken nem csak az adott elemi jelnek lesznek hozzájárulása.

Az ISI és a zaj az oszcilloszkópon láthatóvá tehető, ha a vett jelet 1/Tb vízszintes eltérítési sebességgel ábrázoljuk.

Torzítatlan jelalak esetén a vett jel valamennyi Tb időtartamú szakaszát egymásra rajzoljuk, akkor nyitott szemet kapunk. Torzított esetben nem pontosan a +1 és -1 ponton halad át a jel, így a szem beszűkül, nehezebb lesz a jel detektálása.

Labor2 ZH 2004 ábra6.jpg

10. Állapotteres szabályozás

Adott egy folytonos idejű szakasz állapotteres leírása:

Labor2 ZH 2004 ábra7.jpg

A szakaszt Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u=-Kx} állapot-visszacsatolással kompenzáljuk, ahol K = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer?

Megoldás

A szakasz karakterisztikus egyenlete:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi (s) = det [sI-A] = \left[ \begin{array}{cc} s+1 & -2 \\ -1 & s \end{array} \right]} Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle = s^2+s-2=(s-1)\cdot(s+2)=0 }

Melynek gyökei a szakasz pólusai (sajátértékek), azaz Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s_1=1} és Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s_2=-2} . Mivel Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s_1} valós része pozitív, ezért a szakasz instabil.


A zárt rendszer állapotegyenlete Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u=-Kx} behelyettesítés után:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \dot{x}=(A-B K)\cdot x }


A zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják:

.


Azaz a pólusok -1 és -2, melyek negatív valós résszel rendelkeznek, így a rendszer stabil.

11. Hőmérséklet-szabályozás

Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját!

Megoldás

Labor2 ZH 2014 ábra8.JPG


A jelek elnevezései és dimenziói:

  • - Alapjel
  • - Vezérlőjel
  • - Korlátozott vezérlőjel
  • - Hőmérséklet