„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
|||
(9 közbenső módosítás, amit 3 másik szerkesztő végzett, nincs mutatva) | |||
3. sor: | 3. sor: | ||
==2013.06.06. vizsga megoldásai== | ==2013.06.06. vizsga megoldásai== | ||
===1. Feladat=== | ===1. Feladat=== | ||
Ebben a feladatban a Floyd algoritmussal kapcsolatos kérdésekre kell válaszolnia. (A Floyd-algoritmus egy grában minden pontpárra meghatározza a köztük levő legrövidebb út hosszát.) | |||
'''(a)''' Mit jelöl az <math> F_k </math> mátrix <math> F_k[i,j] </math> eleme? | |||
'''(b)''' Hogyan kell kiszámolni az <math> F_{k-1} </math> mátrixból az <math> F_k </math> mátrixot? | |||
'''(c)''' Igazolja, hogy ez a kiszámítási mód helyes! | |||
'''(d)''' Mennyi a lépésszáma a '''(b)''' lépés egyszeri végrehajtásának? (A lépésszámot nem kell igazolni.) | |||
{{Rejtett | {{Rejtett | ||
|mutatott=<big>'''Megoldás'''</big> | |mutatott=<big>'''Megoldás'''</big> | ||
|szöveg= | |szöveg= | ||
'''a)''' <math> F_k[i,j] </math> azon <math> i \rightarrow j </math> utak legrövidebbjeinek a hosszát tartalmazza, amelyek közbülső pontjai <math>k</math>-nál nem nagyobb sorszámúak. ''(Magyarul: Az <math> F_k[i,j] </math> azt mondja meg, hogy <math>i</math>-ből <math>j</math>-be mennyi a legrövidebb út összsúlya, ha csak az első <math>k</math> darab csúcsot használtuk.)'' | |||
'''b)''' <math> F_k[i,j]:=min\left \{ F_{k-1}[i,k]+F_{k-1}[k,j],F_{k-1}[i,j]\right \} </math> ''<math>(</math>Vagyis vagy az <math> i \rightarrow k \rightarrow j </math> lesz a legrövidebb út, vagy "marad a régi" <math> i \rightarrow j .)</math>'' | |||
'''c)''' Tulajdonképpen az előzőből következik. Hiszen vagy nem változik az új csúccsal a legrövidebb út a 2 pont között <math> (i \rightarrow j) </math>, vagy ha igen, akkor az a <math> (i \rightarrow k) + (k \rightarrow j) </math> lesz az. | |||
'''d)''' <math> O(n^2) </math>. ''<math>(</math>Maga az algoritmus <math>O(n^3)</math>, de csúcsonként <math> O(n^2) </math>, vagyis <math> n \cdot O(n^2) = O(n^3) ).</math>'' | |||
}} | }} | ||
22. sor: | 36. sor: | ||
*Minden belső csúcsnak 2, vagy 3 fia lehet, se több, se kevesebb. ''(Kivéve, ha csak 1 elemet tárolunk a fában, mert akkor a gyökérnek csak 1 fia van.)'' | *Minden belső csúcsnak 2, vagy 3 fia lehet, se több, se kevesebb. ''(Kivéve, ha csak 1 elemet tárolunk a fában, mert akkor a gyökérnek csak 1 fia van.)'' | ||
*A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak). | *A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak). | ||
*A belső csúcsokban mutatókat (M) és 1, vagy 2 | *A belső csúcsokban mutatókat (M) és 1, vagy 2 kulcsot (S) tárolunk. | ||
**Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy | **Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol. [[File:Algel vizsga 2013tavasz V1 2 2fia.png|300px]] | ||
***A bal részfában az elemek kisebbek, mint S1. | ***A bal részfában az elemek kisebbek, mint S1. | ||
***A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1). | ***A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1). | ||
**Ha a csúcsnak 3 fia van, akkor 3 mutatót, és 2 | **Ha a csúcsnak 3 fia van, akkor 3 mutatót, és 2 kulcsot tárol. [[File:Algel_vizsga_2013tavasz_V1_2_3fia.png|400px]] | ||
***A bal részfában az elemek kisebbek, mint S1. | ***A bal részfában az elemek kisebbek, mint S1. | ||
***A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2. | ***A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2. | ||
***A jobb részfában az elemek nagyobb-egyenlőek, mint S2 (vagyis az 1. elem S2). | ***A jobb részfában az elemek nagyobb-egyenlőek, mint S2 (vagyis az 1. elem S2). | ||
'''Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!''' | '''Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!''' | ||
<math>log_2n+1\leq m \leq log_3n+1</math>, ahol <math>m</math> a fa szintszáma. | <math>log_2n+1\leq m \leq log_3n+1</math>, ahol <math>m</math> a fa szintszáma. | ||
$$$ Ez nem pont fordítva van a dián? $$$ | |||
''Bizonyítás:'' | ''Bizonyítás:'' | ||
52. sor: | 67. sor: | ||
}} | }} | ||
===4. Feladat=== | ===4. Feladat (Van megoldás)=== | ||
Van egy tábla <math> (n</math> <big>x</big> <math>m</math> kockákból álló<math> ) </math>. Az <math> A </math> <math> n</math> <big>x</big> <math>m</math>-es mátrixban adott, hogy az egyes kockákban hány mogyoró van (a mogyorók nem lógnak át egyik kockából a másikba). Két gyerek akar osztozkodni a csokin, úgy, hogy a csokit kéfelé törik (egyenes vonal mentén, párhuzamosan a tábla valamelyik szélével). Egy osztkozkodás igazságtalansági faktorát a következőképpen kaphatjuk: ha az egyik darabban <math> k_1 </math> kocka csoki, és <math> m_1 </math> darab mogyoró van, a másikban pedig <math> k_2 </math> kocka csoki és <math> m_2 </math> darab mogyoró, akkor az igazságtalansági faktor <math> \left | \left ( k_1+m_1 \right ) -(k_2+m_2)\right | </math>. Adjon <math> O(nm) </math> lépést használó algoritmust, ami eldönti, hogy melyik szétosztásnak a legkisebb az igazságtalansági faktora. (Egy lépésnek számít, ha kiolvasunk egy értéket az <math> A </math> mátrixból vagy ha összeadást, illetve kivonást hajtunk végre két számon.) | |||
{{Rejtett | {{Rejtett | ||
|mutatott=<big>'''Megoldás'''</big> | |mutatott=<big>'''Megoldás'''</big> | ||
|szöveg= | |szöveg= | ||
[[File:algel_vizsga1_2013tavasz_4_csoki.PNG|200px]] | |||
*Hozzunk létre egy <math> n </math> elemű <math> TN </math> tömböt, ahol az <math> i. </math> cellában az szerepel, hogy az <math> A </math> mátrix annyiadik oszlopában mennyi a <math> k+m </math>. ''(ez <math> n*m </math> kiolvasás, és <math> n*(m-1) </math> összeadás, vagyis <math> \Rightarrow O(nm) </math>. | |||
*Hozzunk létre egy <math> m </math> elemű <math> TM </math> tömböt, ahol az <math> i. </math> cellában az szerepel, hogy az <math> A </math> mátrix annyiadik sorában mennyi a <math> k+m </math>. ''(ez <math> m*n </math> kiolvasás, és <math> m*(n-1) </math> összeadás, vagyis <math> \Rightarrow O(nm) </math>. | |||
[[File:algel_vizsga1_2013tavasz_4_tn_tm.PNG|200px]] | |||
*Hozzunk létre egy <math> (n-1) </math> x <math> 2 </math>-es <math> N </math> tömböt, ahol az 1. sorban balról jobbra nézzük, mennyi a <math> k+m </math>, a 2. sorban pedig jobbról balra. ''<math>(</math>1. sor a <math> (k_1+m_1) </math>, 2. sor pedig a hozzá tartozó <math> (k_2+m_2) .)</math> | |||
**<math>N[1,1]= TN[1] </math> majd <math>N[i,1]= N[i-1,1]+TN[i] , i=2...(n-1)</math>. | |||
**<math>N[1,2]= \sum_{i=2}^{n}TN[i] </math> majd <math>N[i,2]= N[i-1,2]-TN[i] , i=2...(n-1)</math>. | |||
*Hozzunk létre egy <math> (m-1) </math> x <math> 2 </math>-es <math> M </math> tömböt, ahol az 1. sorban fentről lefele nézzük, mennyi a <math> k+m </math>, a 2. sorban pedig alulról felfele. ''<math>(</math>1. sor a <math> (k_1+m_1) </math>, 2. sor pedig a hozzá tartozó <math> (k_2+m_2) .)</math> | |||
**<math>M[1,1]= TM[1] </math> majd <math>M[i,1]= M[i-1,1]+TM[i] , i=2...(m-1)</math>. | |||
**<math>M[1,2]= \sum_{i=2}^{m}TM[i] </math> majd <math>M[i,2]= M[i-1,2]-TM[i] , i=2...(m-1)</math>. | |||
[[File:algel_vizsga1_2013tavasz_4_N_M.PNG|200px]] | |||
*Az <math> N </math> és <math> M </math> tömbök létrehozása <math> O(n) </math> és <math> O(m) </math> lépést igényel. | |||
*Nincs is más dolgunk, mint végigmenni az <math> N </math> és <math> M </math> tömbökön úgy, hogy az <math> i. </math> oszlopban vesszük a 2 szám különbségének abszolút értékét, vagyis az igazságtalansági faktort számoljuk, és mindig elmentjük egy változóba a minimumot, és a ehhez tartozó törésvonalat. Ez is <math> O(n) </math> és <math> O(m) </math> lépés. | |||
*Összesen tehát <math> O(nm)+O(nm)+O(n)+O(m)+O(n)+O(m)=O(nm) </math> lépéssel megoldottuk a feladatot. | |||
:::::[[File:algel_vizsga1_2013tavasz_4_1.PNG|400px]] [[File:algel_vizsga1_2013tavasz_4_2.PNG|400px]] | |||
}} | }} | ||
80. sor: | 110. sor: | ||
}} | }} | ||
===6. Feladat=== | ===6. Feladat (Van megoldás)=== | ||
Egy ország ''n'' kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében <math>O(n^2)</math> időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak). | Egy ország ''n'' kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében <math>O(n^2)</math> időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak). | ||
{{Rejtett | {{Rejtett | ||
86. sor: | 116. sor: | ||
|szöveg= | |szöveg= | ||
*Első lépésben az élsúly legyen a <math> Profit = -(Bevetel - Kiadas) .</math> | |||
*Vegyük fel az összes profitot termelő, vagy legalábbis veszteséget nem termelő éleket <math> (Profit \geq 0 )</math> <math> \Rightarrow O(n^2) </math> lépés. Ez legyen mondjuk a G gráf. | |||
*Két eshetőség áll fenn: | |||
**Ha a G gráf összefüggő, akkor jók is vagyunk, nincs további teendőnk, meg is vagyunk. | |||
**Ha nem összefüggő, akkor: | |||
***Az egyes komponenseket tekintsük egy pontnak. Minden olyan él, ami ebbe a komponensbe megy, menjen ebbe a pontba. Így kapunk egy F gráfot. | |||
***Erre az F gráfra hívunk meg egy Prim-algoritmust, ami <math> O(n^2) </math> időben keres az F gráfban egy minimális feszítőfát ''(vagyis a komponenseket - ami most jelenleg 1-1 pont a gráfban - a lehető legkisebb költségű élekkel köti össze)''. | |||
*Tehát Prim-algoritmussal, vagy anélkül <math> O(n^2) </math> időben megmondjuk, hogy mely hajójáratok indításával lesz az évi bevétel a legmagasabb. | |||
}} | }} | ||
A lap jelenlegi, 2015. június 18., 19:22-kori változata
2013.06.06. vizsga megoldásai
1. Feladat
Ebben a feladatban a Floyd algoritmussal kapcsolatos kérdésekre kell válaszolnia. (A Floyd-algoritmus egy grában minden pontpárra meghatározza a köztük levő legrövidebb út hosszát.)
(a) Mit jelöl az mátrix eleme?
(b) Hogyan kell kiszámolni az mátrixból az mátrixot?
(c) Igazolja, hogy ez a kiszámítási mód helyes!
(d) Mennyi a lépésszáma a (b) lépés egyszeri végrehajtásának? (A lépésszámot nem kell igazolni.)
2. Feladat (Van megoldás)
Adja meg a 2-3 fa definícióját! Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!
3. Feladat
TODO
4. Feladat (Van megoldás)
Van egy tábla x kockákból álló. Az x -es mátrixban adott, hogy az egyes kockákban hány mogyoró van (a mogyorók nem lógnak át egyik kockából a másikba). Két gyerek akar osztozkodni a csokin, úgy, hogy a csokit kéfelé törik (egyenes vonal mentén, párhuzamosan a tábla valamelyik szélével). Egy osztkozkodás igazságtalansági faktorát a következőképpen kaphatjuk: ha az egyik darabban kocka csoki, és darab mogyoró van, a másikban pedig kocka csoki és darab mogyoró, akkor az igazságtalansági faktor . Adjon lépést használó algoritmust, ami eldönti, hogy melyik szétosztásnak a legkisebb az igazságtalansági faktora. (Egy lépésnek számít, ha kiolvasunk egy értéket az mátrixból vagy ha összeadást, illetve kivonást hajtunk végre két számon.)
5. Feladat (Van megoldás)
Egy algoritmus lépésszámáról tudjuk, hogy és tudjuk azt is, hogy . Bizonyítsa be, hogy .
6. Feladat (Van megoldás)
Egy ország n kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak).
7. Feladat
TODO
8. Feladat
TODO