„Számítógépes látórendszerek - Ellenőrző kérdések: Frekvenciatartomány” változatai közötti eltérés
(8 közbenső módosítás, amit 3 másik szerkesztő végzett, nincs mutatva) | |||
1. sor: | 1. sor: | ||
{{Vissza|Számítógépes látórendszerek}} | {{Vissza|Számítógépes látórendszerek}} | ||
== Mutassa be, hogy mit jelent egy kép frekvenciatere, hogyan kell értelmezni? (Képletekre nincs szükség). Hogyan hat egy objektum pozíciója és orientációja a frekvenciatartománybeli képre? == | == Mutassa be, hogy mit jelent egy kép frekvenciatere, hogyan kell értelmezni? (Képletekre nincs szükség). <br/>Hogyan hat egy objektum pozíciója és orientációja a frekvenciatartománybeli képre? == | ||
A kép frekvenciatere megadja azon komplex exponenciális komponensek együtthatóját, amelyekből a kép előállítható. Két dimenziós kép esetén a frekvenciatartomány is két dimenziós lesz. Mivel egy kép diszkrét pontokból áll, ezért a frekvenciatartomány periodikus lesz, azonban ennek csak az első periódusát ábrázoljuk, mivel a többi nem tartalmaz plusz információt. Továbbá mivel a pixelek a képen nyilvánvalóan valós értékűek, ezért a frekvenciatartományban komplex konjugált párokat kell kapnunk. | A kép frekvenciatere megadja azon komplex exponenciális komponensek együtthatóját, amelyekből a kép előállítható. Két dimenziós kép esetén a frekvenciatartomány is két dimenziós lesz. Mivel egy kép diszkrét pontokból áll, ezért a frekvenciatartomány periodikus lesz, azonban ennek csak az első periódusát ábrázoljuk, mivel a többi nem tartalmaz plusz információt. Továbbá mivel a pixelek a képen nyilvánvalóan valós értékűek, ezért a frekvenciatartományban komplex konjugált párokat kell kapnunk. | ||
Egy kép frekvenciaterében az egyes komponensekhez hasonlóan az egy dimenziós esethez két jellemző tartozik: a fázis és az amplitúdó. Lényeges különbség azonban, hogy egy komponenst már két koordináta azonosítja (k és l). Ezek a koordináták határozzák meg a képtartományban a szinuszos hullámok orientációját (ha az egyik nulla, akkor tengelyirányú), illetve periódusát. | Egy kép frekvenciaterében az egyes komponensekhez hasonlóan az egy dimenziós esethez két jellemző tartozik: a fázis és az amplitúdó. Lényeges különbség azonban, hogy egy komponenst már két koordináta azonosítja (k és l). Ezek a koordináták határozzák meg a képtartományban a szinuszos hullámok orientációját (ha az egyik nulla, akkor tengelyirányú), illetve periódusát. | ||
Eltolás a képtartományban nincs hatással az amplitúdókarakterisztikára a frekvenciatartományban (csak a fázisra). A forgatás már hatással van mind a két jellemzőre, de az amplitúdó karakterisztika esetén egy képtartománybeli forgatás az amplitúdó karakterisztikában is egy forgatásként jelenik meg. | Eltolás a képtartományban nincs hatással az amplitúdókarakterisztikára a frekvenciatartományban (csak a fázisra). A forgatás már hatással van mind a két jellemzőre, de az amplitúdó karakterisztika esetén egy képtartománybeli forgatás az amplitúdó karakterisztikában is egy forgatásként jelenik meg. | ||
== Mit jelent az FFT? Hogyan működik az algoritmus? Mi a DCT, miben különbözik a DFT-től? Hogyan működik a FCT? Miért lehet jól alkalmazni ezt az algoritmust tömörítés során és hogyan? == | == Mit jelent az FFT? Hogyan működik az algoritmus? <br/>Mi a DCT, miben különbözik a DFT-től? <br/>Hogyan működik a FCT? <br/>Miért lehet jól alkalmazni ezt az algoritmust tömörítés során és hogyan? == | ||
== Hogyan lehet frekvenciatartományban szűrést végezni? Mit jelent az alul- és felül-áteresztő szűrés? Milyen jellegű zajok kiszűrésére van lehetőség frekvenciatartományban, és hogyan? == | ===FFT: Fast Fourier Transformation=== | ||
== Ismertesse a konvolúció és a frekvenciatartománybeli műveletek kapcsolatát. Mit jelent a dekonvolúció? Mit jelent a Wiener dekonvolúció és mikor használjuk? == | Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban. | ||
Megjegyzés az értelmezéshez: Fourirer transzformálni csak periodikus jeleket lehet, ezt úgy biztosítjuk, hogy a képet ''végtelenszer'' ismételjük az x és y irányokban (pusztán elméleti értelemben, nyilván). | |||
===DCT vs DFT:=== | |||
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén (ez energiatömörítés, kisebb lesz a spektrum integrálja). További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is. | |||
* '''DCT''': Discrete Cosine Transform | |||
* '''DFT''': Discrete Fourier Transform | |||
===FCT: Fast Cosine Transform=== | |||
# Szimmetrikus függvény | |||
# DFT(2N) | |||
# Pozitív tartomány | |||
===Adattömörítés=== | |||
Jóval kisebb intenzitású nagyfrekvenciás komponensek, mivel nincs hirtelen átmenet a kép széleinél, mint DFT esetén. (kevesebb információt vesztünk el a nagyfrekvenciás komponensek eldobásával) | |||
== Hogyan lehet frekvenciatartományban szűrést végezni? <br/>Mit jelent az alul- és felül-áteresztő szűrés? <br/>Milyen jellegű zajok kiszűrésére van lehetőség frekvenciatartományban, és hogyan? == | |||
'''Szűrés frekvenciatartományban:''' Az egyes frekvenciatartománybeli komponenseket meghatározott értékekkel szorozzuk meg, attól függően, hogy milyen ezeknek az értékeknek az eloszlása (milyen frekvenciákon csillapít, átereszt, erősít) az egyes szűrőket csoportosíthatjuk. A szűrés frekvenciatartományban egy egyszerű szorzással valósítható meg, ellenben a képtartománnyal, ahol az konvolúcióval számítható. <br/> | |||
'''Aluláteresztő szűrő:''' Ebben az esetben alacsonyabb frekvenciás komponensek súlya nagyobb, mint a magasabb frekvenciásoké. <br/> | |||
'''Felüláteresztő szűrő:''' Ebben az esetben magasabb frekvenciás komponensek súlya nagyobb, mint az alacsonyabb frekvenciásoké. <br/> | |||
'''Zajszűrés frekvenciatartományban:''' Periodikus zajok nagyon jól kiszűrhetőek, mivel frekvenciatartományban jól körülhatárolható komponensek okozzák őket. Elméletileg ez megoldható lenne képtartományban is, de túl költséges lenne, mert nagyon nagy kernel kellene hozzá a szűrő jellege miatt (lyukszűrő?). Aluláteresztő szűrővel a nagyfrekvenciás zaj is jól kiszűrhető. Felüláteresztő szűrővel az élek, körvonalak jól meghatározhatóak. <br/> | |||
== Ismertesse a konvolúció és a frekvenciatartománybeli műveletek kapcsolatát. <br/>Mit jelent a dekonvolúció? <br/>Mit jelent a Wiener dekonvolúció és mikor használjuk? == | |||
'''Konvolúció a frekvenciatartományban:''' A szűrés frekvenciatartományban egy egyszerű szorzással valósítható meg, ellenben a képtartománnyal, ahol az konvolúcióval számítható. <br /> | |||
'''Dekonvolúció:''' A dekonvolúció során adott egy kép, amely valamely kernellel végzett konvolúció eredménye. A cél az eredeti kép meghatározása. A feladathoz elengedhetetlen a kernel nagyságrendi ismerete vagy sejtése. Tipikus felhasználási terület: defókuszált kép élesítése. <br /> | |||
'''Wiener-dekonvolúció:''' Annyiban nehezebb problémát old meg, hogy feltételezi, hogy a konvolúció során előálló kép zajjal terhelt. Tehát nem a konvolúció eredményén dolgozik, hanem annak egy additív zajjal terhelt változatán. Egy frekvenciatartománybeli eljárásról van szó, amely azokon a frekvenciákon jobban csillapít, ahol a jel-zaj viszony rosszabb. <br /> |
A lap jelenlegi, 2015. június 9., 10:11-kori változata
Mutassa be, hogy mit jelent egy kép frekvenciatere, hogyan kell értelmezni? (Képletekre nincs szükség).
Hogyan hat egy objektum pozíciója és orientációja a frekvenciatartománybeli képre?
A kép frekvenciatere megadja azon komplex exponenciális komponensek együtthatóját, amelyekből a kép előállítható. Két dimenziós kép esetén a frekvenciatartomány is két dimenziós lesz. Mivel egy kép diszkrét pontokból áll, ezért a frekvenciatartomány periodikus lesz, azonban ennek csak az első periódusát ábrázoljuk, mivel a többi nem tartalmaz plusz információt. Továbbá mivel a pixelek a képen nyilvánvalóan valós értékűek, ezért a frekvenciatartományban komplex konjugált párokat kell kapnunk. Egy kép frekvenciaterében az egyes komponensekhez hasonlóan az egy dimenziós esethez két jellemző tartozik: a fázis és az amplitúdó. Lényeges különbség azonban, hogy egy komponenst már két koordináta azonosítja (k és l). Ezek a koordináták határozzák meg a képtartományban a szinuszos hullámok orientációját (ha az egyik nulla, akkor tengelyirányú), illetve periódusát. Eltolás a képtartományban nincs hatással az amplitúdókarakterisztikára a frekvenciatartományban (csak a fázisra). A forgatás már hatással van mind a két jellemzőre, de az amplitúdó karakterisztika esetén egy képtartománybeli forgatás az amplitúdó karakterisztikában is egy forgatásként jelenik meg.
Mit jelent az FFT? Hogyan működik az algoritmus?
Mi a DCT, miben különbözik a DFT-től?
Hogyan működik a FCT?
Miért lehet jól alkalmazni ezt az algoritmust tömörítés során és hogyan?
FFT: Fast Fourier Transformation
Algoritmus működése: 2N méretű adathalmazon működik. Lényegében a problémát mindig megfelezi a páros és páratlan komponensek mentén, egészen addig, amíg már csak egy pár marad, amire már triviálisan számolható a feladat. Az így kapott eredményeken azonban minden fokozat végén pillangó műveleteket kell végezni. Két dimenziós esetben először vízszintes, majd függőleges irányban.
Megjegyzés az értelmezéshez: Fourirer transzformálni csak periodikus jeleket lehet, ezt úgy biztosítjuk, hogy a képet végtelenszer ismételjük az x és y irányokban (pusztán elméleti értelemben, nyilván).
DCT vs DFT:
Koszinusz transzformáció esetén olyan, mintha a kép tükörképe lenne a kép után x és y irányban, ennek megfelelően, nincsenek olyan hirtelen ugrások, mint DFT esetén (ez energiatömörítés, kisebb lesz a spektrum integrálja). További előnye, hogy valós értékeket kapunk, jobb tömörítést tesz lehetővé (kevesebb nagyfrekvenciás komponens a szélek miatt), illetve egyszerűbb is.
- DCT: Discrete Cosine Transform
- DFT: Discrete Fourier Transform
FCT: Fast Cosine Transform
- Szimmetrikus függvény
- DFT(2N)
- Pozitív tartomány
Adattömörítés
Jóval kisebb intenzitású nagyfrekvenciás komponensek, mivel nincs hirtelen átmenet a kép széleinél, mint DFT esetén. (kevesebb információt vesztünk el a nagyfrekvenciás komponensek eldobásával)
Hogyan lehet frekvenciatartományban szűrést végezni?
Mit jelent az alul- és felül-áteresztő szűrés?
Milyen jellegű zajok kiszűrésére van lehetőség frekvenciatartományban, és hogyan?
Szűrés frekvenciatartományban: Az egyes frekvenciatartománybeli komponenseket meghatározott értékekkel szorozzuk meg, attól függően, hogy milyen ezeknek az értékeknek az eloszlása (milyen frekvenciákon csillapít, átereszt, erősít) az egyes szűrőket csoportosíthatjuk. A szűrés frekvenciatartományban egy egyszerű szorzással valósítható meg, ellenben a képtartománnyal, ahol az konvolúcióval számítható.
Aluláteresztő szűrő: Ebben az esetben alacsonyabb frekvenciás komponensek súlya nagyobb, mint a magasabb frekvenciásoké.
Felüláteresztő szűrő: Ebben az esetben magasabb frekvenciás komponensek súlya nagyobb, mint az alacsonyabb frekvenciásoké.
Zajszűrés frekvenciatartományban: Periodikus zajok nagyon jól kiszűrhetőek, mivel frekvenciatartományban jól körülhatárolható komponensek okozzák őket. Elméletileg ez megoldható lenne képtartományban is, de túl költséges lenne, mert nagyon nagy kernel kellene hozzá a szűrő jellege miatt (lyukszűrő?). Aluláteresztő szűrővel a nagyfrekvenciás zaj is jól kiszűrhető. Felüláteresztő szűrővel az élek, körvonalak jól meghatározhatóak.
Ismertesse a konvolúció és a frekvenciatartománybeli műveletek kapcsolatát.
Mit jelent a dekonvolúció?
Mit jelent a Wiener dekonvolúció és mikor használjuk?
Konvolúció a frekvenciatartományban: A szűrés frekvenciatartományban egy egyszerű szorzással valósítható meg, ellenben a képtartománnyal, ahol az konvolúcióval számítható.
Dekonvolúció: A dekonvolúció során adott egy kép, amely valamely kernellel végzett konvolúció eredménye. A cél az eredeti kép meghatározása. A feladathoz elengedhetetlen a kernel nagyságrendi ismerete vagy sejtése. Tipikus felhasználási terület: defókuszált kép élesítése.
Wiener-dekonvolúció: Annyiban nehezebb problémát old meg, hogy feltételezi, hogy a konvolúció során előálló kép zajjal terhelt. Tehát nem a konvolúció eredményén dolgozik, hanem annak egy additív zajjal terhelt változatán. Egy frekvenciatartománybeli eljárásról van szó, amely azokon a frekvenciákon jobban csillapít, ahol a jel-zaj viszony rosszabb.