|
|
119. sor: |
119. sor: |
| }} | | }} |
|
| |
|
| [[Category:Villanyalap]] | | [[Kategória:Villamosmérnök]] |
A lap jelenlegi, 2014. március 13., 18:49-kori változata
1. Feladat:
Mennyi a felezési ideje és átlagosan mennyi az élettartama annak az örökifjú tulajdonságú radioaktív részecskének, mely az első 2 évben 0.2 valószínűséggel nem bomlik el?
Megoldás
élettartam
Ha örökifjú, akkor exponenciális eloszlás.
2. Feladat:
Az origó középpontú, egy sugarú körív felső felén egyenletes eloszlás szerint választunk egy pontot. Határozza meg a pont első koordinátájának a sűrűségfüggvényét!
3. Feladat:
Két, egymástól független véletlen számot generálunk 0 és 1 között. Mi a valószínűsége annak, hogy az elsőnek a négyzete nagyobb, mint a másodiknak a köbe, ha mindkettőt a) egyenletes b) az f(z)=2z (0<z<1) sűrűségfüggvényű eloszlás szerint választjuk?
Megoldás
a, Kérdés:
Kiszámoljuk a sűrűségfüggvényeket, képezzük a direktszorzatot, aztán intergálunk egy jót.
a, Kérdés egyszerűbben
Ez már egyenletes eloszlás, a feladat egyszerűsödik a
vagyis a
görbe alatti terület számítására.
b, Kérdés: