„Matematika A1 - Vizsga: 2007.06.07” változatai közötti eltérés

A VIK Wikiből
David14 (vitalap | szerkesztései)
Szikszayl (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
 
(Egy közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva)
1. sor: 1. sor:
{{noautonum}}
__NOTOC__
{{vissza|Matematika A1a - Analízis}}
{{vissza|Matematika A1a - Analízis}}


===1. Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.===
===1. Feladat===
 
Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.


{{Rejtett
{{Rejtett
14. sor: 16. sor:
}}
}}


===2. Oldja meg a <math>z^2 = \overline{z}^ 2</math> egyenletet.===
===2. Feladat===
 
Oldja meg a <math>z^2 = \overline{z}^ 2</math> egyenletet.


{{Rejtett
{{Rejtett
38. sor: 42. sor:
}}
}}


===3. Határozza meg az alábbi sorozatok határértékét:===
===3. Feladat===
 
Határozza meg az alábbi sorozatok határértékét:


<math>a, \; a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}</math>
<math>a, \; a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}</math>
102. sor: 108. sor:
}}
}}


===4. Legyen <math> f(x)= xarctan\frac{1}{x^2}, x \neq 0</math> és <math>0, x=0</math>.===
===4. Feladat===
 
Legyen <math> f(x)= xarctan\frac{1}{x^2}, x \neq 0</math> és <math>0, x=0</math>.


a, Hol folytonos és hol deriválható <math>f(x)</math>?
a, Hol folytonos és hol deriválható <math>f(x)</math>?
118. sor: 126. sor:
}}
}}


===5. Igaz vagy hamis? Válaszát indokolja!===
===5. Feladat===
 
Igaz vagy hamis? Válaszát indokolja!


a, Ha <math>a,b \neq 0</math> és <math>ab = ac</math>, akkor <math>b = c</math>
a, Ha <math>a,b \neq 0</math> és <math>ab = ac</math>, akkor <math>b = c</math>
138. sor: 148. sor:
}}
}}


===6. Számítsa ki a következő határozatlan integrálokat:===
===6. Feladat===
 
Számítsa ki a következő határozatlan integrálokat:


<math>a, \; \int \frac{1}{x(x^2+1)}dx </math>
<math>a, \; \int \frac{1}{x(x^2+1)}dx </math>
194. sor: 206. sor:
}}
}}


[[Category:Villanyalap]]
[[Kategória:Villamosmérnök]]

A lap jelenlegi, 2014. március 13., 18:49-kori változata


1. Feladat

Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

2. Feladat

Oldja meg a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z^2 = \overline{z}^ 2} egyenletet.

Megoldás

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z^2 = \overline{z}^2 }

Írjuk ki z-t és z konjugáltat algebrai alakban:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a+bi)^2 = (a-bi)^2 }

Zárójelek felbontása után:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a^2+2abi-b^2 = a^2-2abi-b^2 }

Kihúzzuk a közös tagokat, osztunk 2i-vel:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ab = -ab }

Ez akkor lehetséges, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a = 0 \vee b = 0 } és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a,b \in \mathbb{R}} , az összes ilyen alakú szám megoldás.

3. Feladat

Határozza meg az alábbi sorozatok határértékét:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a, \; a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b, \; b_n=\sqrt[n]{\frac{2n^2-1}{n^2+2}}}

Megoldás

a, Feladat:


Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}= \left(\frac{n^2+2-2-1}{n^2+2}\right)^{3n^2}= \left(\frac{n^2+2}{n^2+2}+\frac{-3}{n^2+2}\right)^{3n^2}= \left(1-\frac{3}{n^2+2}\right)^{3n^2}}

A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left(1-\frac{9}{3n^2+6}\right)^{3n^2} }

Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás!

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\left(1-\frac{9}{3n^2+6}\right)^{3n^2+6}}{\left(1-\frac{9}{3n^2+6}\right)^6} }

Látható, hogy a nevező 1-hez tart, így a határérték:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \underline{\underline{e^{-9} = \frac{1}{e^9}}}}


b, Feladat:


A gyökjel alatt végezzünk algebrai átalakítást:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b_n=\sqrt[n]{2-\frac{5}{n^2+2}} }

Most adjunk alsó és felső becslést a gyökjel alatti sorozatra:

Felső becslésnek tökéletes a 2, hiszen sosem érheti el a gyökjel alatti sorozat, és minden eleme kisebb nála.

Alsó becslésnek vegyük a gyökjel alatti sorozat első elemét, hiszen ha n nő, akkor egyre kisebb számokat vonunk ki a kettőből, tehát szigorúan monoton növekszik a gyökjel alatti sorozat.

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2-\frac{5}{3}=\frac{1}{3} < 2-\frac{5}{n^2+2} < 2}

Most alkalmazzuk a rendőrelvvet (alias csendőrelv, közrefogási elv), amit megtehetünk, mivel tudjuk, hogy az n-edik gyök szigorúan monoton növekvő függvény, tehát kisebb szám n-edik gyöke kisebb, mint egy nagyobb számé.

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sqrt[n]{\frac{1}{3}} <\sqrt[n]{ 2-\frac{5}{n^2+2} }<\sqrt[n]{ 2}}


Tudjuk, hogy:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{n\to\infty} {\sqrt[n]{\frac{1}{3}}}=1}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{n\to\infty} {\sqrt[n]{ 2}} =1}


Így a rendőrelv miatt:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{n\to\infty} {b_n}=1}

4. Feladat

Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x)= xarctan\frac{1}{x^2}, x \neq 0} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0, x=0} .

a, Hol folytonos és hol deriválható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x)} ?

b, Hol folytonos Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f'(x)} ?

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

5. Feladat

Igaz vagy hamis? Válaszát indokolja!

a, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a,b \neq 0} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ab = ac} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b = c}

b, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim {a_n} = \lim{b_n} = 0} akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim{ \frac{a_n}{b_n} }= 1}

c, Ha f korlátos [a,b]-n, akkor folytonos [a,b]-n

d, Ha f szigorúan monoton nő Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathbb{R}} -en, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{x \rightarrow \infty} {f(x) }= \infty}

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

6. Feladat

Számítsa ki a következő határozatlan integrálokat:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a, \; \int \frac{1}{x(x^2+1)}dx }

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b, \; \int \frac{\sqrt{x}}{x\sqrt{x}+3}dx}

Megoldás

a, Feladat:


Parciális törtekre bontjuk az integrandust:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx +C}{x^2+1}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{x(x^2+1)} = \frac{A(x^2+1)+ x(Bx +C)}{x(x^2+1)}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{x(x^2+1)} = \frac{Ax^2 + A + Bx^2 + Cx)}{x(x^2+1)}}


Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 = (A+B)x^2 + Cx + A}


Két polinom csakis akkor lehet egyenlő, ha megegyeznek a megfelelő együtthatóik:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A=1}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (A+B)=0 \Rightarrow B = -1 }

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C=0}


Tehát:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}}


Így már könnyű integrálni:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int \frac{1}{x(x^2+1)}\;dx = \int\frac{1}{x} - \frac{1}{2}\int\frac{2x}{x^2+1} = ln|x| - \frac{1}{2}ln|x^2+1|+C }


b, Feladat:


Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{x^{\frac{1}{2}}}{xx^{\frac{1}{2}}+3} = \frac{x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3} }

Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :)

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{2}{3} \int{\frac{\frac{3}{2}x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3}}\;dx = \frac{2}{3}\;ln{|x^{\frac{3}{2}}+3|+C}}