„Matematika A1 - Vizsga: 2007.01.23” változatai közötti eltérés

A VIK Wikiből
aNincs szerkesztési összefoglaló
aNincs szerkesztési összefoglaló
 
188. sor: 188. sor:
}}
}}


[[Category:Villanyalap]]
[[Kategória:Villamosmérnök]]

A lap jelenlegi, 2014. március 13., 19:49-kori változata


1. Feladat

Adja meg az összes olyan komplex számot, melyre .

Megoldás

Végezzük el először a -vel való beszorzást.

Mivel a komplex síkon a (-4;0) koordinátájú pontba mutató helyvektor forgásszöge és nagysága 4, így:

Mert

Ebből kell most negyedik gyököt vonni:

ahol

2. Feladat

Határozza meg az alábbi határértékeket!

Megoldás

a, Feladat:

b, Feladat:

3. Feladat

Melyik igaz, melyik nem:

a, Ha folytonos -n, akkor korlátos -n

b, Ha folytonos -n, akkor korlátos -n

c, Ha folytonos -n, akkor véges sok pont kivételével deriválható -n

d, Ha értelmezett és véges sok pont kivételével deriválható -n akkor folytonos itt

e, Ha deriválható -n, akkor folytonos -n

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

4. Feladat

Hány megoldása van az egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!

Megoldás

Mivel 13-ad fokú egyenletet nem tudunk megoldani, függvényvizsgálattal kell megkeresni a megoldásokat. A feladat ekvivalens a következővel:

Hány zérushelye van az függvénynek?

Deriváljuk a függvényt először:

Ahol a derivált nulla, ott lokális szélsőértéke van a függvénynek.

, ebből vagy

Most megnézzük, hogy ezek maximum vagy minimum helyek. Ezt a második derivált segítségével tudjuk megnézni, amibe ha vissza helyettesítjük az x-et, a következőt tudjuk meg:

ha f"(x)>0 a függvény konvex, és minimuma van,

ha f"(x)<0, a függvény konkáv, és maximuma van.

, ebből és .

Tehát a függvénynek (-1)-ben lokális maximuma, 1-ben lokális minimuma van.

Így igaz, hogy a függvény a intervallumon szigorúan monoton nő, a intervallumon szigorúan monoton csökken, míg a intervallumon szigorúan monoton nő.

Emiatt és mivel az f(x) függvény folytonos, így lehet 1, 2 vagy 3 zérushelye, amit a következőképpen derítünk ki:

és -ből és az előzőekből következik, hogy -1 és 1 között van zérushely, továbbá, hogy -1 előtt és 1 után is van egy-egy.

Most már csak a -1 és 1 közötti zérushely előjelét kell eldönteni, legkönnyebb így: , tehát -1 és 0 közt van a zérushely, így előjele negatív.

Tehát az egyenletnek 3 megoldása van, két negatív és egy pozitív.

5. Feladat

Határozza meg az alábbi integrál értékét!

Megoldás

A megoldás során azt a trükköt alkalmazzuk, hogy az integrálandó függvényt beszorozzuk 1-el, majd pedig ezt integráljuk parciálisan.

-et az előző módszerrel ismét parciálisan integráljuk integráljuk:

6. Feladat

Határozza meg az alábbi határértéket!

Megoldás

Végezzük el először az integrálást, parciálisan, mint az előző feladatban is:

Most ezt visszahelyettesítjük:


A második kifejezést pedig 2-szer L'Hospital-juk:


Tehát a feladat megoldása: