„Matematika A1 - Vizsga: 2007.01.23” változatai közötti eltérés

A VIK Wikiből
aNincs szerkesztési összefoglaló
1. sor: 1. sor:
{{noautonum}}
__NOTOC__
{{vissza|Matematika A1a - Analízis}}


{{vissza|Matematika A1a - Analízis}}
===1. Feladat===


===1. Adja meg az összes olyan <math>z</math> komplex számot, melyre <math>z^4=2j\frac{-8+6j}{3+4j}</math>.===
Adja meg az összes olyan <math>z</math> komplex számot, melyre <math>z^4=2j\frac{-8+6j}{3+4j}</math>.


{{Rejtett
{{Rejtett
23. sor: 24. sor:
}}
}}


===2. Határozza meg az alábbi határértékeket!===
===2. Feladat===
 
Határozza meg az alábbi határértékeket!


<math>a,\;\lim_{x\to\infty}\frac{3^{n+2}+n^3}{3^n-n}=?</math>
<math>a,\;\lim_{x\to\infty}\frac{3^{n+2}+n^3}{3^n-n}=?</math>
48. sor: 51. sor:
}}
}}


===3. Melyik igaz, melyik nem:===
===3. Feladat===
 
Melyik igaz, melyik nem:


a, Ha <math>f</math> folytonos <math>[a,b]</math>-n, akkor <math>f</math> korlátos <math>[a,b]</math>-n
a, Ha <math>f</math> folytonos <math>[a,b]</math>-n, akkor <math>f</math> korlátos <math>[a,b]</math>-n
70. sor: 75. sor:
}}
}}


===4. Hány megoldása van az <math>x^{13}-13x-9=0</math> egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!===
===4. Feladat===
 
Hány megoldása van az <math>x^{13}-13x-9=0</math> egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!


{{Rejtett
{{Rejtett
112. sor: 119. sor:
}}
}}


===5. Határozza meg az alábbi integrál értékét!===
===5. Feladat===
 
Határozza meg az alábbi integrál értékét!


<math>\int_1^e ln^2x\mathrm{d}x=?</math>
<math>\int_1^e ln^2x\mathrm{d}x=?</math>
141. sor: 150. sor:
}}
}}


===6. Határozza meg az alábbi határértéket!===
===6. Feladat===
 
Határozza meg az alábbi határértéket!


<math>\lim_{x\to\infty}\frac{\int_0^x \arctan{(t)}\mathrm{d}t}{x}=?</math>
<math>\lim_{x\to\infty}\frac{\int_0^x \arctan{(t)}\mathrm{d}t}{x}=?</math>

A lap 2014. február 2., 04:21-kori változata


1. Feladat

Adja meg az összes olyan komplex számot, melyre .

Megoldás

Végezzük el először a -vel való beszorzást.

Mivel a komplex síkon a (-4;0) koordinátájú pontba mutató helyvektor forgásszöge és nagysága 4, így:

Mert

Ebből kell most negyedik gyököt vonni:

ahol

2. Feladat

Határozza meg az alábbi határértékeket!

Megoldás

a, Feladat:

b, Feladat:

3. Feladat

Melyik igaz, melyik nem:

a, Ha folytonos -n, akkor korlátos -n

b, Ha folytonos -n, akkor korlátos -n

c, Ha folytonos -n, akkor véges sok pont kivételével deriválható -n

d, Ha értelmezett és véges sok pont kivételével deriválható -n akkor folytonos itt

e, Ha deriválható -n, akkor folytonos -n

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

4. Feladat

Hány megoldása van az egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!

Megoldás

Mivel 13-ad fokú egyenletet nem tudunk megoldani, függvényvizsgálattal kell megkeresni a megoldásokat. A feladat ekvivalens a következővel:

Hány zérushelye van az függvénynek?

Deriváljuk a függvényt először:

Ahol a derivált nulla, ott lokális szélsőértéke van a függvénynek.

, ebből vagy

Most megnézzük, hogy ezek maximum vagy minimum helyek. Ezt a második derivált segítségével tudjuk megnézni, amibe ha vissza helyettesítjük az x-et, a következőt tudjuk meg:

ha f"(x)>0 a függvény konvex, és minimuma van,

ha f"(x)<0, a függvény konkáv, és maximuma van.

, ebből és .

Tehát a függvénynek (-1)-ben lokális maximuma, 1-ben lokális minimuma van.

Így igaz, hogy a függvény a intervallumon szigorúan monoton nő, a intervallumon szigorúan monoton csökken, míg a intervallumon szigorúan monoton nő.

Emiatt és mivel az f(x) függvény folytonos, így lehet 1, 2 vagy 3 zérushelye, amit a következőképpen derítünk ki:

és -ből és az előzőekből következik, hogy -1 és 1 között van zérushely, továbbá, hogy -1 előtt és 1 után is van egy-egy.

Most már csak a -1 és 1 közötti zérushely előjelét kell eldönteni, legkönnyebb így: , tehát -1 és 0 közt van a zérushely, így előjele negatív.

Tehát az egyenletnek 3 megoldása van, két negatív és egy pozitív.

5. Feladat

Határozza meg az alábbi integrál értékét!

Megoldás

A megoldás során azt a trükköt alkalmazzuk, hogy az integrálandó függvényt beszorozzuk 1-el, majd pedig ezt integráljuk parciálisan.

-et az előző módszerrel ismét parciálisan integráljuk integráljuk:

6. Feladat

Határozza meg az alábbi határértéket!

Megoldás

Végezzük el először az integrálást, parciálisan, mint az előző feladatban is:

Most ezt visszahelyettesítjük:


A második kifejezést pedig 2-szer L'Hospital-juk:


Tehát a feladat megoldása: