„Matematika A1 - Vizsga: 2007.01.23” változatai közötti eltérés

A VIK Wikiből
143. sor: 143. sor:
===6. Határozza meg az alábbi határértéket!===
===6. Határozza meg az alábbi határértéket!===


<math>\lim_{x\to\infty}\frac{\int_0^x \arctan{t}\mathrm{d}t}{x}=?</math>
<math>\lim_{x\to\infty}\frac{\int_0^x \arctan{(t)}\mathrm{d}t}{x}=?</math>


{{Rejtett
{{Rejtett
151. sor: 151. sor:
Végezzük el először az integrálást, parciálisan, mint az előző feladatban is:
Végezzük el először az integrálást, parciálisan, mint az előző feladatban is:


<math>\int_0^x 1*\arctan{t}\mathrm{d}t=[t*\arctan{t}]_0^x-\int_0^x t*\frac{1}{t^2+1}\mathrm{d}t=[t*\arctan{t}]_0^x-\frac{1}{2}\int_0^x \frac{2t}{t^2+1}\mathrm{d}t=</math>
<math>\int_0^x 1*\arctan{(t)}\mathrm{d}t=\left[t*\arctan{(t)}\right]_0^x-\int_0^x t*\frac{1}{t^2+1}\mathrm{d}t=\left[t*\arctan{(t)}\right]_0^x-\frac{1}{2}\int_0^x \frac{2t}{t^2+1}\mathrm{d}t=</math>
<math>=[t*\arctan{t}]_0^x-\frac{1}{2}[ln(t^2+1)]_0^x=</math>
 
<math>=x*\arctan{x}-0-\frac{1}{2}ln(x^2+1)-0=x*\arctan{x}-\frac{1}{2}ln(x^2+1)</math>
<math>=\left[t*\arctan{(t)}\right]_0^x-\frac{1}{2}\left[ln\left(t^2+1\right)\right]_0^x=
x*\arctan{x}-0-\frac{1}{2}ln\left(x^2+1\right)+0=x*\arctan{x}-\frac{1}{2}ln\left(x^2+1\right)</math>


Most ezt visszahelyettesítjük:
Most ezt visszahelyettesítjük:


<math>\lim_{x\to\infty}\frac{x*\arctan{x}-\frac{1}{2}ln(x^2+1)}{x}=</math>
<math>\lim_{x\to\infty}\frac{x*\arctan{x}-\frac{1}{2}ln\left(x^2+1\right)}{x}=</math>
<math>\lim_{x\to\infty}(\arctan{x}-\frac{ln(x^2+1)}{2x})=</math>
<math>\lim_{x\to\infty}\left(\arctan{x}-\frac{ln\left(x^2+1\right)}{2x}\right)=</math>
<math>\frac{\pi}{2}-\lim_{x\to\infty}\frac{ln(x^2+1)}{2x}</math>
<math>\frac{\pi}{2}-\lim_{x\to\infty}\frac{ln\left(x^2+1\right)}{2x}</math>
 
<math>\lim_{x\to\infty}\arctan{x}=\frac{\pi}{2}</math>


Mert, <math>\lim_{x\to\infty}\arctan{x}=\frac{\pi}{2}</math>.


A második kifejezést pedig 2-szer L'Hospital-juk:
A második kifejezést pedig 2-szer L'Hospital-juk:


<math>lim_{x\to\infty}\frac{ln(x^2+1)}{2x}=</math>
<math>\lim_{x\to\infty}\frac{ln(x^2+1)}{2x}=</math>
<math>\lim_{x\to\infty}\frac{\frac{2x}{x^2+1}}{2}=</math>  
<math>\lim_{x\to\infty}\frac{\frac{2x}{x^2+1}}{2}=</math>  
<math>\lim_{x\to\infty}\frac{x}{x^2+1}=</math>
<math>\lim_{x\to\infty}\frac{x}{x^2+1}=</math>
<math>\lim_{x\to\infty}\frac{1}{2x}=0</math>
<math>\lim_{x\to\infty}\frac{1}{2x}=0</math>


Így a feladat megoldása: <math>\frac{\pi}{2}-0=\frac{\pi}{2}</math>
A feladatokat le kellene ellenőrizni + hozzáadni a 3. feladat megoldását.


-- [[BalazsiPeter|r.crusoe]] - 2008.01.14.
Tehát a feladat megoldása: <math>\frac{\pi}{2}-0=\frac{\pi}{2}</math>


}}
}}


[[Category:Villanyalap]]
[[Category:Villanyalap]]

A lap 2014. január 18., 00:07-kori változata

Sablon:Noautonum


1. Adja meg az összes olyan komplex számot, melyre .

Megoldás

Végezzük el először a -vel való beszorzást.

Mivel a komplex síkon a (-4;0) koordinátájú pontba mutató helyvektor forgásszöge és nagysága 4, így:

Mert

Ebből kell most negyedik gyököt vonni:

ahol

2. Határozza meg az alábbi határértékeket!

Megoldás

a, Feladat:

b, Feladat:

3. Melyik igaz, melyik nem:

a, Ha folytonos -n, akkor korlátos -n

b, Ha folytonos -n, akkor korlátos -n

c, Ha folytonos -n, akkor véges sok pont kivételével deriválható -n

d, Ha értelmezett és véges sok pont kivételével deriválható -n akkor folytonos itt

e, Ha deriválható -n, akkor folytonos -n

Megoldás

Ehhez a feladathoz még nincs megoldás!

Ha tudod, írd le ide ;)

4. Hány megoldása van az egyenletnek? Ha van(nak) megoldás(ok), állapítsa meg előjelüket!

Megoldás

Mivel 13-ad fokú egyenletet nem tudunk megoldani, függvényvizsgálattal kell megkeresni a megoldásokat. A feladat ekvivalens a következővel:

Hány zérushelye van az függvénynek?

Deriváljuk a függvényt először:

Ahol a derivált nulla, ott lokális szélsőértéke van a függvénynek.

, ebből vagy

Most megnézzük, hogy ezek maximum vagy minimum helyek. Ezt a második derivált segítségével tudjuk megnézni, amibe ha vissza helyettesítjük az x-et, a következőt tudjuk meg:

ha f"(x)>0 a függvény konvex, és minimuma van,

ha f"(x)<0, a függvény konkáv, és maximuma van.

, ebből és .

Tehát a függvénynek (-1)-ben lokális maximuma, 1-ben lokális minimuma van.

Így igaz, hogy a függvény a intervallumon szigorúan monoton nő, a intervallumon szigorúan monoton csökken, míg a intervallumon szigorúan monoton nő.

Emiatt és mivel az f(x) függvény folytonos, így lehet 1, 2 vagy 3 zérushelye, amit a következőképpen derítünk ki:

és -ből és az előzőekből következik, hogy -1 és 1 között van zérushely, továbbá, hogy -1 előtt és 1 után is van egy-egy.

Most már csak a -1 és 1 közötti zérushely előjelét kell eldönteni, legkönnyebb így: , tehát -1 és 0 közt van a zérushely, így előjele negatív.

Tehát az egyenletnek 3 megoldása van, két negatív és egy pozitív.

5. Határozza meg az alábbi integrál értékét!

Megoldás

A megoldás során azt a trükköt alkalmazzuk, hogy az integrálandó függvényt beszorozzuk 1-el, majd pedig ezt integráljuk parciálisan.

-et az előző módszerrel ismét parciálisan integráljuk integráljuk:

6. Határozza meg az alábbi határértéket!

Megoldás

Végezzük el először az integrálást, parciálisan, mint az előző feladatban is:

Most ezt visszahelyettesítjük:


A második kifejezést pedig 2-szer L'Hospital-juk:


Tehát a feladat megoldása: