„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

A VIK Wikiből
241. sor: 241. sor:
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg= A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, melyek a távvezeték analógia ismeretében is egyszerűen levezethetők.
|szöveg= A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők.




249. sor: 249. sor:




Látható, hogy az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a 2. képletet négyzetre emelve, majd rendezve kapjuk:
Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a 2. képletet négyzetre emelve, majd rendezve kapjuk:


<math> (\sigma +j \omega \varepsilon) = \frac{\gamma^{2}}{j \omega \mu } </math>
<math> (\sigma +j \omega \varepsilon) = \frac{\gamma^{2}}{j \omega \mu } </math>
258. sor: 258. sor:
<math> Z0 = \sqrt{\frac{(j \omega \mu)^{2}}{\gamma^{2}}}</math>
<math> Z0 = \sqrt{\frac{(j \omega \mu)^{2}}{\gamma^{2}}}</math>


A gyökvonás elvégzése után az eredményt megadó formula az alábbiak szerint alakul:
A gyökvonás elvégzése után az eredményt megadó formula:




<math> Z0 = \frac{j \omega \mu}{\gamma}</math>
<math> Z0 = \frac{j \omega \mu}{\gamma}</math>


A kifejezésben szereplő konstansok értéke a feladat szövegében adott. Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (s<sup>-1</sup> és m<sup>-1</sup>), ill. figyeljünk hogy μ=μ<sub>0</sub>*μ<sub>r</sub>
A kifejezésben szereplő konstansok értéke a feladat szövegében adott, Z0 hullámellenállás meghatározható. Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (s<sup>-1</sup> és m<sup>-1</sup>), ill. figyeljünk hogy μ=μ<sub>0</sub>*μ<sub>r</sub>


}}
}}

A lap 2014. január 15., 01:37-kori változata


Itt gyűjtjük a szóbeli vizsgán húzható számolási feladatokat. A bennük szereplő számadatok nem túl lényegesek, mivel a vizsgán is csak a számolás menetére és elméleti hátterére kíváncsiak.

Kérlek bővítsétek a szóbelin ténylegesen kapott feladatokkal, amennyiben időtök engedi, részletes megoldással is.

Már az is nagy segítség, ha legalább az általad húzott feladat PONTOS szövegét és SORSZÁMÁT beírod ide! Sablon:Noautonum

42. Feladat: Áramsűrűségből megadott felületen átfolyó áram számítása

Stacionárius áramlási térben az áramsűrűség Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle J = e_z* 5 {kA \over m^2} } . Mekkora a z-tengellyel 60°-os szöget bezáró Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A=80 cm^2 } felületen átfolyó áram?

Megoldás

A J áramsűrűség-vektor megadja a rá merőleges, egységnyi felületen átfolyó áram nagyságát. A J áramsűrűség-vektor z irányú, nekünk a felületre normális komponensével kell számolnunk.

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I = \int_A J dA} , esetünkben Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle I = J * A * \sin60^\circ=5000*80*10^{-4}*\sin60^\circ= 34.64A}

50. Feladat: Két áramjárta vezető közötti erőhatás

Két egymással párhuzamos végtelen hosszú vezető egymástól 4m távolságban. Az egyiken 2A, a másikon 3A folyik. Mekkora erő hat az egyik vezeték 1 m-es szakaszára?

Megoldás

Az egyikre ható erő egyenlő a másikra ható erővel (Newton erő-ellenerő törvénye). A megoldáshoz az Ampere-féle gerjesztési törvényre, és a Lorentz-erőre van szükség.

H-t egy kör vonalán integráljuk, aminek a középpontját merőlegesen döfi át az egyik vezeték. Mivel a mágneses térerősségvektor a körvonal minden pontjában érintő irányú, így a vonalintegrál szorzássá egyszerűsödik.

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \oint H dl = \int J dA = I}

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H_1 2 d \pi = I_1 \longrightarrow H_1 = \frac{I_1}{2 d \pi}}

Tudjuk még, hogy Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle B = \mu_0 H} vákuumban.

A Lorentz-erő képlete is szorzássá egyszerűsödik, mivel a vektorok derékszöget zárnak be egymással:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F = q (v \times B ) = I (l \times B)} , ahol I a konstans áramerősség, l pedig a vezetéken folyó áram irányának vektora, hossza a megadott 1 m.

Innen a megoldás:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_{12} = I_2 l B_1 = I_2 l \mu_0 H_1 = \frac{\mu_0 l I_1 I_2}{2 d \pi} = \frac{4 \pi 10^{-7} \cdot 1 \cdot 2 \cdot 3}{2 \cdot 4 \cdot \pi} = 3 \cdot 10^{-7} N}

Fordított indexeléssel ugyanez jönne ki a másikra is. Jobbkéz-szabályból következik, hogy ha azonos irányba folyik az áram, akkor vonzzák egymást, ha ellentétes irányba, akkor taszítják. Szóbelin még érdemes megemlíteni, hogy ez a jelenség adja az Ampere mértékegység definícióját, 1 m hosszú szakasz, 1 m távolság, 1-1 A áramerősség esetén az erő:

Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F = 2 \cdot 10^{-7} N}

52. Feladat: Két toroid tekercs kölcsönös indukciója

Egy toroidra két tekercs van csévélve, az egyik menetszáma Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle N_1} , a másiké . A toroid közepes sugara , keresztmetszetének felülete , relatív permeabilitása . Határozza meg a két tekercs kölcsönös induktivitását!

Megoldás

A kölcsönös induktivitás definíció szerint:

58. Feladat: Toroid tekercs fluxusa és energiája

Hányszorosára változik egy L önindukciós együtthatóval rendelkező I1 = 2A árammal átjárt toroid belsejében a mágneses fluxus, ha az áramerősséget nagyon lassan I2 = 5A -re növeljük? Hányszorosára változik a tekercs mágneses mezejében tárolt energia?

Megoldás

Mivel az áram nagyon lassan változik, így a kezdő és végállapotot vehetjük két egymástól független stacioner állapotú esetnek.

Egy bármilyen tekercs fluxusa az képletből számolható. Ez alapján a toroid fluxusváltozása:

Egy bármilyen tekercs energiája számolható a képlet alapján. Tehát a toroid energiaváltozása:

65. Feladat: Koaxiális jellegű vezeték tengelyében a mágneses térerősség

Egy r = 0.09m sugarú vékony falú rézcső belsejében, a tengelytől d = 0.03m távolságra, azzal párhuzamosan egy vékony rézvezeték helyezkedik el. Mindkét vezető elég hosszú és I = 5A nagyságú egyenáram folyik bennük, de ellenkező irányban. Mekkora az eredő mágneses térerősség nagysága a tengelyben?

Megoldás

A feladatot bontsuk két részre. Első körben az Ampere-féle gerjesztési törvény segítségével megállapítható, hogy a rézcső belsejében a mágneses térerősség nagysága, csakis a belső rézvezeték elhelyezkedésétől és az abban folyó áram nagyságától függ.

Ez onnét látszik, hogyha olyan zárt L görbe mentén integrálunk, ami a rézcsőn belül vezet, akkor a görbe által kifeszített síkon csakis a vékony rézvezeték árama megy át.

Második körben meghatározható a vékony rézvezeték által a tengely mentén keltett mágneses térerősség nagysága. Szimmetria okokból a vékony rézvezeték mágneses tere hengerszimmetrikus, az erővonalak koncentrikus körök, ezért a mágneses térerősségvektor mindig érintő irányú, így a vonalintegrál egy egyszerű szorzássá egyszerűsödik:

78. Feladat: Ideális távvezeték állóhullámarányának számítása

Egy ideális távvezeték mentén a feszültség komplex amplitúdója az függvény szerint változik. Adja meg az állóhullámarányt!

Megoldás

A megadott függvényből kiolvasható a hullám beeső (pozitív irányba halad --> - j*béta*z ) és a reflektált (negatív irányba halad --> + j*béta*z ) komponenseinek komplex amplitúdói:

Megjegyzés: A feladat megadható úgy is, hogy U(x) függvényt adják meg. Ekkor a beeső komponenshez (U2+) tartozik a pozitív, a reflektálthoz (U2-) pedig a negatív hatványkitevő!

Kapcsolat a két fajta paraméterezés között:

Ezekből felírható a távvezeték reflexiós tényezőjének abszolút értéke definíció szerinti "x" paraméterezéssel, majd ebből "z" szerinti paraméterezéssel:

Ebből pedig már számolható a távvezeték állóhullámaránya:

81. Feladat: Távvezeték megadott feszültségű pontjának meghatározása

Adott egy végtelen hosszú távvezeték, melynek paraméterei az alábbiak: és . Egy egyenfeszültségű feszültség forrást kapcsolunk rá. Határozza meg azt a z távolságot, ahol a feszültség lesz!

Megoldás

Első körben meg kell határoznunk, hogy mennyi a távvezeték csillapítása (alfa), feltéve hogy omega=0, mivel egyenfeszültséggel gerjesztjük a távvezetéket:

Most meg kell határoznunk, hogy a távvezeték mely "z" távolságú pontjára csillapodik a feszültség amplitúdója az eredeti érték felére:

86. Feladat: Ideális távvezeték feszültségének számítása

Adott egy ideális távvezeték, melynek hullámimpedanciája , hossza pedig . A távvezeték végén adott az áram és a feszültség komplex amplitúdója: illetve . Határozzuk meg a feszültség komplex amplitúdóját a távvezeték elején.

Megoldás

Tudjuk, hogy így

Miután ez megvan, felírjuk az ideális távvezeték lánckarakterisztikájának első egyenletét, majd behelyettesítünk:

94. Feladat: Zárt vezetőkeretben indukált áram

Egy ellenállású zárt vezetőkeret fluxusa , ahol . Mekkora a keretben folyó áram effektív értéke?

Megoldás

Az indukálási törvény alapján:

Behelyettesítve a körfrekvencia értékét: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_i=-30*cos(\omega t) V}

Innen a feszültség effektív értéke: Értelmezés sikertelen (MathML SVG vagy PNG tartalékkal (modern böngészők és kisegítő eszközök számára ajánlott): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_{eff}={30 \over \sqrt 2} V}

Az áram effektív értéke pedig:

98. Feladat: Zárt vezetőhurokban indukált feszültség

Az xy síkon helyezkedik el egy 3m sugarú, kör alakú, zárt l görbe. A mágneses indukció a térben homogén, z irányú komponense 40ms idő alatt 0.8T értékről lineárisan zérusra csökken. Mekkora feszültség indukálódik eközben az l görbe mentén?

Megoldás
Az indukálási törvény alapján:

107. Feladat: Hengeres vezetőben disszipált hőteljesítmény

Egy keresztmetszetű, 3m hosszú hengeres vezetőben 10A amplitúdójú 50 Hz-es szinuszos áram folyik. A behatolási mélység , a fajlagos vezetőképesség pedig . Mennyi a vezetőben disszipált hőteljesítmény?

Megoldás

A vezető sugara:

Mivel a vezető sugara jóval kisebb mint a behatolási mélység, így a vezető vehető egy sima "l" hosszúságú, "A" keresztmetszetű és "szigma" fajlagos vezetőképességű vezetékdarabnak.

A vezetékben disszipálódó hőteljesítmény (vigyázat, csúcsérték van megadva és nem effektív):

109. Feladat: Hengeres vezető belsejében az elektromos térerősség

Egy 2mm sugarú, hosszú hengeres vezető 35 MS/m fajlagos vezetőképességű anyagból van, a behatolási mélység 80µm. A térerősség időfüggvénye a vezető felszínén . Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos. Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!

Megoldás

Mivel:

Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:

A differenciális Ohm-törvény:

Ezeket egybefésülve és áttérve időtartományba:

Behelyettesítés után mélységben:

111. Feladat: Behatolási mélység

Vezetőben terjedő síkhullám elektromos térerőssége minden 3 mm után a felére csökken. Határozza meg a behatolási mélységet, a csillapítási tényezőt és a fázistényezőt!

Megoldás

terjedési együttható

- csillapítási tényező

- fázistényező

behatolási mélység


Vezető anyagokban , mivel:

, azonban vezető anyagokban , így a terjedési együttható:


Ebből számításának módja:

(de most nem ezt kell használni)


A térerősség amplitúdójának nagysága a vezetőben:

119. Feladat: Hullámellenállás számítása

Egy adott μr relatív permeabilitású közegben síkhullám terjed ω=... s-1 körfrekvenciával. A terjedési együttható értéke ismert, γ=... mm-1. Adja meg a közeg hullámellenállásának értékét!

Megoldás

A megoldáshoz két alapképlet ismerete szükséges a síkhullámokkal kapcsolatosan, ezek a távvezeték analógia ismeretében is egyszerűen levezethetők.



Az első képlet gyök alatti kifejezésének csak a nevezője nem ismert. Ezt a 2. képletet négyzetre emelve, majd rendezve kapjuk:

Behelyettesítés után:


A gyökvonás elvégzése után az eredményt megadó formula:


A kifejezésben szereplő konstansok értéke a feladat szövegében adott, Z0 hullámellenállás meghatározható. Behelyettesítés előtt ω és γ értékét alakítsuk megfelelő mértékegységre (s-1 és m-1), ill. figyeljünk hogy μ=μ0r

143. Feladat: Hertz-dipólus által adott irányban kisugárzott teljesítmény

Egy Hertz-dipólus az origó síkjában szögben áll. Írja fel az összes kisugárzott teljesítményt tartományban a Poynting-vektor és a Hertz-dipólus irányhatásának segítségével!

Megoldás

A Hertz-dipólus által kisugárzott teljes teljesítmény:

A megadott tartomány az xy sík feletti félteret írja le. Mivel a Hertz-dipólus iránykarakterisztikája az xy síkra szimmetrikus, így a felső féltérbe a teljes teljesítmény fele sugárzódik ki.

149. Feladat: Koaxiális kábelben áramló teljesítmény

Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:<br\> (ahol a radiális irányú egységvektor), <br\> (ahol a fi irányú egységvektor).<br\> Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara r1, a külső vezető belső sugara r2, a vezetők ideálisak, a kábel tengelye a z irányú.

Megoldás
A Poynting-vektor kifejezése: (ahol a z irányú egységvektor). <br\>Innen a teljesítmény: