„Anal2-magic” változatai közötti eltérés

Marci22 (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
Marci22 (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
233. sor: 233. sor:
sum<sup>n</sup><sub>k=0</sub>( ( f<sup>(k)</sup>(x0) / k! ) * (x - x0)<sup>k</sup> )<br />
sum<sup>n</sup><sub>k=0</sub>( ( f<sup>(k)</sup>(x0) / k! ) * (x - x0)<sup>k</sup> )<br />
tehat ahhoz, hogy felirjuk a T-sorat egy fuggvenynek n db derivaltra lesz szukseg.<br />
tehat ahhoz, hogy felirjuk a T-sorat egy fuggvenynek n db derivaltra lesz szukseg.<br />
'''Nevezetes fuggvenyek T-sorai:'''
'''Nevezetes fuggvenyek T-sorai:'''<br />
x<sup>m</sup> / (1 - x) = sum<sup>n</sup><sub>k=m</sub>( x<sup>k</sup> ) --> Konvergencia tartomany: |x| < 1
x<sup>m</sup> / (1 - x) = sum<sup>n</sup><sub>k=m</sub>( x<sup>k</sup> ) --> Konvergencia tartomany: |x| < 1<br />
e<sup>x</sup> = sum<sup>n</sup><sub>k=0</sub>( x<sup>k</sup> / k! ) --> KT: x eleme R-nek
e<sup>x</sup> = sum<sup>n</sup><sub>k=0</sub>( x<sup>k</sup> / k! ) --> KT: x eleme R-nek<br />
ln(1 + x) = sum<sup>n</sup><sub>k=0</sub>( ( -1<sup>k</sup> / (k + 1)! ) * x<sup>k + 1</sup> ) --> KT: |x| < 1
ln(1 + x) = sum<sup>n</sup><sub>k=0</sub>( ( -1<sup>k</sup> / (k + 1)! ) * x<sup>k + 1</sup> ) --> KT: |x| < 1<br />
(1 + x)<sup>a</sup> = sum<sup>n</sup><sub>k=0</sub>( (a choose k) * x<sup>k</sup> ) --> |x| < 1, a eleme C-nek
(1 + x)<sup>a</sup> = sum<sup>n</sup><sub>k=0</sub>( (a choose k) * x<sup>k</sup> ) --> |x| < 1, a eleme C-nek<br />
sin(x) = sum<sup>n</sup><sub>k=0</sub>( ( -1<sup>k</sup> / (2 * k + 1)! ) * x<sup>2 * k + 1</sup> ) --> KT: x eleme R-nek
sin(x) = sum<sup>n</sup><sub>k=0</sub>( ( -1<sup>k</sup> / (2 * k + 1)! ) * x<sup>2 * k + 1</sup> ) --> KT: x eleme R-nek<br />
cos(x) = sum<sup>n</sup><sub>k=0</sub>( ( -1<sup>k</sup> / (2 * k)! ) * x<sup>2 * k</sup> ) --> KT: x eleme R-nek
cos(x) = sum<sup>n</sup><sub>k=0</sub>( ( -1<sup>k</sup> / (2 * k)! ) * x<sup>2 * k</sup> ) --> KT: x eleme R-nek<br />
sinh(x) = sum<sup>n</sup><sub>k=0</sub>( ( 1 / (2 * k + 1)! ) * x<sup>2 * k + 1</sup> ) --> KT: x eleme R-nek
sinh(x) = sum<sup>n</sup><sub>k=0</sub>( ( 1 / (2 * k + 1)! ) * x<sup>2 * k + 1</sup> ) --> KT: x eleme R-nek<br />
cosh(x) = sum<sup>n</sup><sub>k=0</sub>( ( 1 / (2 * k)! ) * x<sup>2 * k</sup> ) --> KT: x eleme R-nek
cosh(x) = sum<sup>n</sup><sub>k=0</sub>( ( 1 / (2 * k)! ) * x<sup>2 * k</sup> ) --> KT: x eleme R-nek<br />
'''Lagrange-hiba becsles:'''
'''Lagrange-hiba becsles:'''<br />
Tehat a hibat meg lehet becsulni az n+1-ik T-sor taggal.
Tehat a hibat meg lehet becsulni az n+1-ik T-sor taggal.<br />
xi eleme lesz az [x ; x0] tartomanynak, erdemes ugy valasztani, hogy egyszeru legyen szamolni (pl x0 altalaban jo)
xi eleme lesz az [x ; x0] tartomanynak, erdemes ugy valasztani, hogy egyszeru legyen szamolni (pl x0 altalaban jo)<br />
Lagrange-hiba: ( f<sup>n + 1</sup>(xi) / (n + 1)! ) * (x - x0)<sup>n + 1</sup>
Lagrange-hiba: ( f<sup>n + 1</sup>(xi) / (n + 1)! ) * (x - x0)<sup>n + 1</sup><br />
'''Pelda (keresztrol):'''
'''Pelda (keresztrol):'''<br />
y' = sin( y ) + 2 + x
y' = sin( y ) + 2 + x<br />
y( x = pi ) = 1
y( x = pi ) = 1<br />
y( x = 3 ) = kb mennyi ? (becsles kell)
y( x = 3 ) = kb mennyi ? (becsles kell)<br />
felso becsles a hibara?
felso becsles a hibara?<br />
y'( x = pi ) = sin( 1 ) + 2 + pi // itt az 1 elvileg radianban van --> szamologep!
y'( x = pi ) = sin( 1 ) + 2 + pi // itt az 1 elvileg radianban van --> szamologep!<br />
y<sup>(2)</sup>( x = pi ) = cos( y ) * y' + 1 = cos( 1 ) * ( sin( 1 ) + 2 + pi ) + 1
y<sup>(2)</sup>( x = pi ) = cos( y ) * y' + 1 = cos( 1 ) * ( sin( 1 ) + 2 + pi ) + 1<br />
T( x0 = pi ) = y( pi ) + y'( pi ) * (x - pi) = 1 + ( sin( 1 ) + 2 + pi ) * (x - pi)
T( x0 = pi ) = y( pi ) + y'( pi ) * (x - pi) = 1 + ( sin( 1 ) + 2 + pi ) * (x - pi)<br />
y(3) ~= T( x0 = pi, x = 3 ) = 1 + ( sin( 1 ) + 2 + pi ) * (3 - pi) ~= -0.2 // ezt a tanar nagyon becsulte!
y(3) ~= T( x0 = pi, x = 3 ) = 1 + ( sin( 1 ) + 2 + pi ) * (3 - pi) ~= -0.2 // ezt a tanar nagyon becsulte!<br />
letezik olyan xi, hogy [3 ; pi] tartomanyban van, mivel felso becslest csinalunk, ezert pi-t valaszjuk xi-nek.
letezik olyan xi, hogy [3 ; pi] tartomanyban van, mivel felso becslest csinalunk, ezert pi-t valaszjuk xi-nek.<br />
hiba = | y(3) - T( x0 = pi, x = 3 ) | = Lagrange = ( f<sup>(2)</sup>(xi) / 2! ) * (3 - pi)<sup>2</sup> ~= 0.1 // meg ezt is!
hiba = | y(3) - T( x0 = pi, x = 3 ) | = Lagrange = ( f<sup>(2)</sup>(xi) / 2! ) * (3 - pi)<sup>2</sup> ~= 0.1 // meg ezt is!<br />
tehat a megoldas: -0.2 +- 0.1
tehat a megoldas: -0.2 +- 0.1<br />
<br />
A lap eredeti címe: „https://vik.wiki/Anal2-magic