„Segítség:Latex” változatai közötti eltérés
átírás |
a 3 elírás javítása |
||
(6 közbenső módosítás, amit 2 másik szerkesztő végzett, nincs mutatva) | |||
1. sor: | 1. sor: | ||
{{:Segítség:Tartalomjegyzék}} | {{:Segítség:Tartalomjegyzék}} | ||
Összetettebb matematikai képletek beszúrására [http://hu.wikipedia.org/wiki/TeX Latex] (ejtsd: latekh) nyelvű képletleírót használunk. Ennek az a lényege, hogy a cikkeken belül a folyó szövegbe könnyen tudunk képleteket beilleszteni, nem kell mondjuk képet készíteni egy képletről, és azt külön feltölteni. | Összetettebb matematikai képletek beszúrására [http://hu.wikipedia.org/wiki/TeX Latex] (ejtsd: latekh) nyelvű képletleírót használunk. Ennek az a lényege, hogy a cikkeken belül a folyó szövegbe könnyen tudunk képleteket beilleszteni, nem kell mondjuk képet készíteni egy képletről, és azt külön feltölteni. | ||
10. sor: | 9. sor: | ||
Ha ezt az oldalt elolvasod, az egész érthetővé fog válni. | Ha ezt az oldalt elolvasod, az egész érthetővé fog válni. | ||
__TOC__ | |||
== Alapok | == Alapok – <math> címke == | ||
'''Minden képletet egy <code><math></code> és egy <code></math></code> címke közé kell rakni''', majd a két címke között már nem a wiki szintaxisa szerint, hanem Latex szintaxissal lehet képleteket írni. | '''Minden képletet egy <code><math></code> és egy <code></math></code> címke közé kell rakni''', majd a két címke között már nem a wiki szintaxisa szerint, hanem Latex szintaxissal lehet képleteket írni. | ||
20. sor: | 17. sor: | ||
: Példa <math> címkével: <code><nowiki><math>1+2=3</math></nowiki></code> → <math>1+2=3</math> | : Példa <math> címkével: <code><nowiki><math>1+2=3</math></nowiki></code> → <math>1+2=3</math> | ||
Látszik, hogy az utóbbi példa kicsit máshogy néz ki, ez azért van, mert a wiki automatikusan egy képpé alakít minden <math> | Látszik, hogy az utóbbi példa kicsit máshogy néz ki, ez azért van, mert a wiki automatikusan egy képpé alakít minden <math> címkén belüli képletet, és azt szúrja be az oldalra. | ||
: ''Megjegyzés: innentől minden példában vegyük is úgy, hogy a kód az <math> címkén belül van, nem lesz mindig külön kiírva. | : ''Megjegyzés: innentől minden példában vegyük is úgy, hogy a kód az <math> címkén belül van, nem lesz mindig külön kiírva. | ||
34. sor: | 31. sor: | ||
|} | |} | ||
== Speciális szimbólumok == | |||
Észrevehetjük, hogy a képletmegjelenítő minden karaktert dőlt betűsként jelenít meg, ami azt jelenti, hogy az egy ''matematikai változó'', de mi nem mindig matematikai változókat akarunk begépelni. Azt is észrevehetjük, hogy van pár olyan karakter, amit szívesen begépelnénk, de nincs ''alfa'' billentyű a klaviatúránkon. | Észrevehetjük, hogy a képletmegjelenítő minden karaktert dőlt betűsként jelenít meg, ami azt jelenti, hogy az egy ''matematikai változó'', de mi nem mindig matematikai változókat akarunk begépelni. Azt is észrevehetjük, hogy van pár olyan karakter, amit szívesen begépelnénk, de nincs ''alfa'' billentyű a klaviatúránkon. | ||
67. sor: | 64. sor: | ||
| <code>\Omega \Sigma \Pi \Theta</code> | | <code>\Omega \Sigma \Pi \Theta</code> | ||
| <math>\Omega \Sigma \Pi \Theta</math> | | <math>\Omega \Sigma \Pi \Theta</math> | ||
|- | |||
| <code>\equiv = \neq < > \le \ge \sim \approx</code> | |||
| <math>\equiv = \neq < > \le \ge \sim \approx</math> | |||
|- | |||
| <code>\emptyset \in \notin \cap \cup \subset \supset \forall \exists \nexists</code> | |||
| <math>\emptyset \in \notin \cap \cup \subset \supset \forall \exists \nexists</math> | |||
|- | |||
| <code>\Leftarrow \leftarrow \uparrow \iff \leftrightarrow \Leftrightarrow \downarrow \rightarrow \Rightarrow</code> | |||
| <math>\Leftarrow \leftarrow \uparrow \iff \leftrightarrow \Leftrightarrow \downarrow \rightarrow \Rightarrow</math> | |||
|} | |} | ||
Vigyázni kell, hogy a nevüket ne rontsuk el, vagy ne hivatkozzunk nem létező speciális szimbólumra, mert akkor egy csúnya hibaüzenett fog dobni a Latex. A következő történik, ha <code>\alpha</code> helyett <code>\alfa</code>-t írok. | Vigyázni kell, hogy a nevüket ne rontsuk el, vagy ne hivatkozzunk nem létező speciális szimbólumra, mert akkor egy csúnya hibaüzenett fog dobni a Latex. A következő történik, ha <code>\alpha</code> helyett <code>\alfa</code>-t írok. | ||
: <div | : <div style="height: 4em; overflow: scroll; border: 1px solid #aaa; padding: 5px;"><math>\sin^2 \alfa + \cos^2 \alfa = 1</math></div> | ||
== Operátorok == | |||
A fentiekkel már elég sok mindent le tudunk írni, de még mindig nem mindent. Az elvi gond az, hogy a matematikai formuláink kétdimenziósak, a speciális szimbólumainkat, kitevőinket, alsó indexeinket használva viszont lényegében még mindig az egydimenziós leírásnál vagyunk. | |||
Latexben '''operátorokat''' használunk a matematikai formulák többdimenziós leírására. Az operátor egy olyan speciális szimbólum, aminek paraméterei vannak, például egy tört számlálója és nevezője, egy gyök kitevője és ami benne van, egy mátrix elemei, stb. | |||
; Az általános operátorszintaxis | |||
: <code>\'''operátornév'''[''opció1'',''opció2'',...] {'''paraméter1'''} {'''paraméter2'''} ...</code> | |||
Egy paraméter az lehet egy bővebben kifejtendő Latex-képlet is, akár további operátorokkal és paraméterekkel, ezért kellenek a kapcsoszárójelek a paraméterek csoportosítására. Ha a paraméterünk egyetlen szimbólum, akkor a kapcsoszárójel el is hagyható. Az opciók rész általában elhagyható, a szögletes zárójeleket nem kell kiírni. | |||
{| class="wikitable" | |||
|+ Fontosabb operátorok, és példák | |||
|- | |||
| <code>\frac {a+b} {a-b}, \frac 1 2 = 0.5</code> | |||
| <math>\frac {a+b} {a-b}, \frac 1 2 = 0.5</math> | |||
|- | |||
| <code>\sqrt 2, \sqrt {a^2 + b^2} = c, \sqrt[3] 8 = 2</code> | |||
| <math>\sqrt 2, \sqrt {a^2 + b^2} = c, \sqrt[3] 8 = 2</math> | |||
|- | |||
| <code>\sqrt[3]{x^3+y^3 \over 2}</code> | |||
| <math>\sqrt[3]{x^3+y^3 \over 2}</math> | |||
|- | |||
| <code>\lim_{n \to \infty}x_n , \binom{n}{k} </code> | |||
| <math>\lim_{n \to \infty}x_n , \binom{n}{k} </math> | |||
|- | |||
| <code>s_k \equiv 0 \pmod{m}</code> | |||
| <math>s_k \equiv 0 \pmod{m}</math> | |||
|- | |||
| <code>\lim_{n \to \infty}x_n , \int_{1}^{3}\frac{e^3/x}{x^2}\, \mathrm d x</code> | |||
| <math>\lim_{n \to \infty}x_n , \int_{1}^{3}\frac{e^3/x}{x^2}\, \mathrm d x</math> | |||
|- | |||
| <pre>\left (\begin{matrix} | |||
x & y \\ | |||
z & v | |||
\end{matrix} \right), | |||
\begin{bmatrix} | |||
0 & \cdots & 0 \\ | |||
\vdots & \ddots & \vdots \\ | |||
0 & \cdots & 0 | |||
\end{bmatrix}</pre> | |||
| <math>\left (\begin{matrix} | |||
x & y \\ | |||
z & v | |||
\end{matrix} \right)</math>, | |||
<math>\begin{bmatrix} | |||
0 & \cdots & 0 \\ | |||
\vdots & \ddots & \vdots \\ | |||
0 & \cdots & 0 | |||
\end{bmatrix}</math> | |||
|- | |||
| <pre>\begin{array}{lcl} | |||
z & = & a \\ | |||
f(x,y,z) & = & x + y + z | |||
\end{array}</pre> | |||
| <math>\begin{array}{lcl} | |||
z & = & a \\ | |||
f(x,y,z) & = & x + y + z | |||
\end{array}</math> | |||
|- | |||
| <pre>f(n) = | |||
\begin{cases} | |||
n/2, & \text{if }n\text{ is even} \\ | |||
3n+1, & \text{if }n\text{ is odd} | |||
\end{cases}</pre> | |||
| <math>f(n) = | |||
\begin{cases} | |||
n/2, & \text{if }n\text{ is even} \\ | |||
3n+1, & \text{if }n\text{ is odd} | |||
\end{cases}</math> | |||
|- | |||
| Rossz zárójelezés: <code>( \frac a b )</code> <br/> | |||
Helyes zárójelezés: <code>\left( \frac a b \right)</code> | |||
| <math>( \frac a b )</math> | |||
<math>\left( \frac a b \right)</math> | |||
|} | |||
==További információ== | |||
Az itt említett lehetőségeken kívül [http://hu.wikipedia.org/wiki/Wikip%C3%A9dia:K%C3%A9pletle%C3%ADr%C3%B3_nyelv itt] találsz még információkat. |
A lap jelenlegi, 2013. december 14., 14:57-kori változata
Összetettebb matematikai képletek beszúrására Latex (ejtsd: latekh) nyelvű képletleírót használunk. Ennek az a lényege, hogy a cikkeken belül a folyó szövegbe könnyen tudunk képleteket beilleszteni, nem kell mondjuk képet készíteni egy képletről, és azt külön feltölteni.
Itt egy példa arra, hogy milyen (elsőre ijesztőnek tűnő) kóddal kaphatunk egy szép képletet.
<math>\int_{-\infty}^\infty \mathrm{e}^{-\alpha x^2} \mathrm{d}x = \sqrt{\frac{\pi}{\alpha}}</math>
|
Ha ezt az oldalt elolvasod, az egész érthetővé fog válni.
Alapok – <math> címke
Minden képletet egy <math>
és egy </math>
címke közé kell rakni, majd a két címke között már nem a wiki szintaxisa szerint, hanem Latex szintaxissal lehet képleteket írni.
- Példa <math> címke nélkül:
1+2=3
→ 1+2=3 - Példa <math> címkével:
<math>1+2=3</math>
→
Látszik, hogy az utóbbi példa kicsit máshogy néz ki, ez azért van, mert a wiki automatikusan egy képpé alakít minden <math> címkén belüli képletet, és azt szúrja be az oldalra.
- Megjegyzés: innentől minden példában vegyük is úgy, hogy a kód az <math> címkén belül van, nem lesz mindig külön kiírva.
Az is látszik, hogy egyszerű szöveget beírva, ugyanazt kapjuk vissza, amit beírtunk, de hát a képletleírót nem is egyszerű képletek leírására találták ki. Pár speciális karakter használható egyszerű és gyakran használt formázásra, például felső indexbe írásra (hatványozásra) a ^
karakter vagy alsó indexre a _
karakter.
a^2 + b^2 = c^2
|
|
a_i^2 + b_i^2 = c_i^2
|
Speciális szimbólumok
Észrevehetjük, hogy a képletmegjelenítő minden karaktert dőlt betűsként jelenít meg, ami azt jelenti, hogy az egy matematikai változó, de mi nem mindig matematikai változókat akarunk begépelni. Azt is észrevehetjük, hogy van pár olyan karakter, amit szívesen begépelnénk, de nincs alfa billentyű a klaviatúránkon.
sin^2 alfa + cos^2 alfa = 1
|
A két probléma öszefügg. Mind a függvénynevek, mind a görög betűk (sok mással együtt) speciális szimbólumoknak számítanak Latex nyelven.
A speciális szimbólumok \
-jellel kezdődnek. Vagyis egy visszaperjelet kell eléjük írni.
\sin^2 \alpha + \cos^2 \alpha = 1
|
\sin \cos \tan \sinh \cosh
|
|
\alpha \beta \gamma \pi \rho \varrho \phi \varphi \sigma \theta \vartheta
|
|
\Omega \Sigma \Pi \Theta
|
|
\equiv = \neq < > \le \ge \sim \approx
|
|
\emptyset \in \notin \cap \cup \subset \supset \forall \exists \nexists
|
|
\Leftarrow \leftarrow \uparrow \iff \leftrightarrow \Leftrightarrow \downarrow \rightarrow \Rightarrow
|
Vigyázni kell, hogy a nevüket ne rontsuk el, vagy ne hivatkozzunk nem létező speciális szimbólumra, mert akkor egy csúnya hibaüzenett fog dobni a Latex. A következő történik, ha \alpha
helyett \alfa
-t írok.
- Értelmezés sikertelen (ismeretlen „\alfa” függvény): {\displaystyle \sin^2 \alfa + \cos^2 \alfa = 1}
Operátorok
A fentiekkel már elég sok mindent le tudunk írni, de még mindig nem mindent. Az elvi gond az, hogy a matematikai formuláink kétdimenziósak, a speciális szimbólumainkat, kitevőinket, alsó indexeinket használva viszont lényegében még mindig az egydimenziós leírásnál vagyunk.
Latexben operátorokat használunk a matematikai formulák többdimenziós leírására. Az operátor egy olyan speciális szimbólum, aminek paraméterei vannak, például egy tört számlálója és nevezője, egy gyök kitevője és ami benne van, egy mátrix elemei, stb.
- Az általános operátorszintaxis
\operátornév[opció1,opció2,...] {paraméter1} {paraméter2} ...
Egy paraméter az lehet egy bővebben kifejtendő Latex-képlet is, akár további operátorokkal és paraméterekkel, ezért kellenek a kapcsoszárójelek a paraméterek csoportosítására. Ha a paraméterünk egyetlen szimbólum, akkor a kapcsoszárójel el is hagyható. Az opciók rész általában elhagyható, a szögletes zárójeleket nem kell kiírni.
\frac {a+b} {a-b}, \frac 1 2 = 0.5
|
|
\sqrt 2, \sqrt {a^2 + b^2} = c, \sqrt[3] 8 = 2
|
|
\sqrt[3]{x^3+y^3 \over 2}
|
|
\lim_{n \to \infty}x_n , \binom{n}{k}
|
|
s_k \equiv 0 \pmod{m}
|
|
\lim_{n \to \infty}x_n , \int_{1}^{3}\frac{e^3/x}{x^2}\, \mathrm d x
|
|
\left (\begin{matrix} x & y \\ z & v \end{matrix} \right), \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} |
,
|
\begin{array}{lcl} z & = & a \\ f(x,y,z) & = & x + y + z \end{array} |
|
f(n) = \begin{cases} n/2, & \text{if }n\text{ is even} \\ 3n+1, & \text{if }n\text{ is odd} \end{cases} |
|
Rossz zárójelezés: ( \frac a b ) Helyes zárójelezés: |
|
További információ
Az itt említett lehetőségeken kívül itt találsz még információkat.