„2007. 04. 13. ZH” változatai közötti eltérés
Új oldal, tartalma: „{{GlobalTemplate|Infoalap|SzabtechZh2007Tavasz}} * Feladatlap: http://info.sch.bme.hu/document.php?doc_id=62 a zh-k közt megtalálható ==1. feladat== '''Fogalmazza…” |
|||
(Egy közbenső módosítás, amit egy másik szerkesztő végzett, nincs mutatva) | |||
13. sor: | 13. sor: | ||
==2. feladat== | ==2. feladat== | ||
'''Egy folytonos szabályozási rendszerben a felnyitott kör átviteli függvénye:''' | '''Egy folytonos szabályozási rendszerben a felnyitott kör átviteli függvénye:''' | ||
<math> | <math>L(s) = \frac{5 (1 + 0.01s)}{s (1 + 0.05s)}</math> | ||
<hr/> | <hr/> | ||
22. sor: | 22. sor: | ||
===b) Vázolja fel a Bode diagram aszimptotikus amplitúdó-körfrekvencia görbéjét és a fázis-körfrekvencia görbe menetét!=== | ===b) Vázolja fel a Bode diagram aszimptotikus amplitúdó-körfrekvencia görbéjét és a fázis-körfrekvencia görbe menetét!=== | ||
* [[ | * [[Bode-diagram kézi rajzolása]] | ||
<center>{{InLineImageLink|Infoalap|SzabtechZh2007Tavasz|2007_04_13_-_2b-bode.png}}</center> | <center>{{InLineImageLink|Infoalap|SzabtechZh2007Tavasz|2007_04_13_-_2b-bode.png}}</center> | ||
A lap jelenlegi, 2013. október 19., 10:37-kori változata
Ez az oldal a korábbi SCH wikiről lett áthozva.
Ha úgy érzed, hogy bármilyen formázási vagy tartalmi probléma van vele, akkor, kérlek, javíts rajta egy rövid szerkesztéssel!
Ha nem tudod, hogyan indulj el, olvasd el a migrálási útmutatót.
- Feladatlap: http://info.sch.bme.hu/document.php?doc_id=62 a zh-k közt megtalálható
1. feladat
Fogalmazza meg az általánosított Nyquist stabilitási kritériumot.
T.k. 180. oldal: Ha a felnyitott rendszer labilis, és jobb oldali pólusainak száma P, a zárt szabályozási rendszer aszimptotikusan stabilis, ha a felnyitott rendszer teljes NYQUIST diagramja annyiszor veszi körül a komplex számsíkon a -1+j0 pontot az óramutató járásával ellentétes pozitív irányban, amennyi a felnyitott rendszer jobb oldali pólusainak a száma (azaz P-szer).
2. feladat
Egy folytonos szabályozási rendszerben a felnyitott kör átviteli függvénye:
a) Adja meg a rendszer zérusait és pólusait.
zérus:
pólus:
b) Vázolja fel a Bode diagram aszimptotikus amplitúdó-körfrekvencia görbéjét és a fázis-körfrekvencia görbe menetét!
c)
A fázistöbbletet úgy számolod, hogy a vágási körfrekvenciánál megnézed mennyi a fázisgörbe értéke(Fí(omega) és hozzáadsz 180 fokot. A vágási frekvencia itt most 5(mindig a számlálóban lévő konstans szám(K). Mindez a b) feladatban felrajzolt ábrákon látszana jól. Asszem a feladatban +90 fok lett a fázistolás.
d) Stabilis-e a rendszer? Indokolja a válaszát!
Igen, mert nincs a jobb számsíkon pólus.
=e) Mekkora statikus hibával követi a zárt szabályozási kör az egységugrás, az egységsebességugrás illetve az egységgyorsulás alapjelet?
Típusszám | 1 |
egységugrás | 0 |
egységsebességugrást | |
egységgyorsulást |
3. feladat
Gyökhelygörbe: megadja a karakterisztikus egyenlet gyökeit a komplex síkon, miközben a rendszer egy paramétere 0 és végtelen között változik.
Megnézed a pólusokat, zérusokat, ezután felrajzolod. Jelen esetben a -20 és a 0 között, és a -100-tól -végtelenig van szakasza a valós tengelyen.
Matlab:
s = zpk('s') K = 1 L = (K * (s + 100)) / (s * (s + 20)) rlocus(L)
4.feladat
H(s)=C×(s*E-A)^(-1)×B+D képletbe kell behelyettesíteni a mátrixainkat. E az egységmátrix. Egy M^(-1)=adj(M)/det(M). adj(M)= (a22 -a12 | |} -a21 a11). (balról jobbra, |= új sor :-) )
Determinánst talán mindenki tud számolni :-)
5.feladat
H=e^(-4s)
U=sin(w0t) ~> e^(j0)
γ=60°
A 60°-os eltolás miatt tudjuk, hogy Y=sin(w0t-60°), ami egyenlő e^j(-60°)
Ezen kívül tudjuk, hogy e^(-4s), ahol s=jw, tehát e^(-4jw). Mivel Y=H*U, ezért tudjuk, hogy Y=e^(-4jw)*e^j(0).
Így aztán láthatjuk, hogy e^j(-60°)=e^(-4jw)*e^j(0) => w0=15
Az eltolás során az amplitúdó nem változik, tehát marad 1. A w végig omegát jelentett.
6.feladat
§=0,7
L(s)=num/den
T=num/(num+den)
Tehát T=K/(K+(1+s)*(1+5s)), ami egyenlő 1/(1+(1/K)+(6/K)*s+(5/K)*s^2).
Ismerjük az általános képletet: T=1/(1+(2*§*T0)*s+(T0^2)*s^2).
Innen látjuk, hogy 6/K=1.4T0 és 5/K=T0^2. Ezt rendezve megkapjuk, hogy k=3,67.
Nyugodtan négyzetre emelhetünk, mert ki volt kötve, hogy K>0.
-- SiposGergely - 2007.04.13. -- TitCar - 2007.04.13.