Matematika A3 villamosmérnököknek - Vizsga, 2006.06.02.

A VIK Wikiből



Dr. Andai Attila által összeállított feladatsor.

1. feladat

Oldja meg a komplex számok körében a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sinh z = i } egyenletet. (15p)

Megoldás

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sinh z = i}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sinh z = \sinh{x} \cos{y} + i \cosh{c} \sin{y} = i}
Ebből következik:

  • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sinh{x} \cos{y} = 0} , ami Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x = 0} vagy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y = \frac{\pi}{2} + k2\pi} számpárokra teljesül
  • Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \cosh{x} \sin{y} = 1} , ami szintén a fenti számpárokra teljesül
tehát Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z= 0 + i (\frac{\pi}{2} + k2\pi), k\in\mathbb{Z}} .

2. feladat

Mutassa meg, hogy az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u(x,y) = e^{-y}\sin x } függvény harmonikus , és keresse meg azt a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle v(x,y)} harmonikus társat, amelynél az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x+iy) = u(x,y)+iv(x,y)} függvényre Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(0)=0} teljesül. (15p)

Megoldás
TODO

3. feladat

Tekintsük a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2 + y^2 + z^2 \leqslant 9} \right\}} térrészt és az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f=(x,y,z) = xy^2z} függvényt. Számolja ki a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int\limits_{V} f } térfogati integrált (20p)

Megoldás

A Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2 + y^2 + z^2 \leqslant 9} \right\}} térrész egy 3 sugarú negyed körcikk és belseje. Gömbi koordinátákkal felírva: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V = \left\{ {(r,\varphi ,\vartheta ) \in \mathbb{R}^3 |0 \leqslant r \leqslant 3,0\leqslant \varphi \leqslant \pi,0 \leqslant \vartheta \leqslant \frac{\pi }{2}} \right\} }

Az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f} függvény gömbi koordinátákkal: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x,y,z) = xy^2 z = (r\sin \vartheta \cos \varphi )(r\sin \vartheta \sin \varphi )^2 (r\cos \vartheta ) }

ezzel a térrészen vett integrál:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{gathered} \int\limits_V f = \int\limits_{r = 0}^3 {\int\limits_{\vartheta = 0}^{\frac{\pi } {2}} {\int\limits_{\varphi = 0}^\pi {r^4 \sin ^3 \vartheta \cos \vartheta \sin ^2 \varphi \cos \varphi \cdot d\varphi } d\vartheta dr} } \hfill \\ = \int\limits_{r = 0}^3 {\int\limits_{\vartheta = 0}^{\frac{\pi } {2}} {r^4 \sin ^3 \vartheta \cos \vartheta \left[ {\frac{{\sin ^3 \varphi }} {3}} \right]_{\varphi = 0}^\pi d\vartheta dr} } = 0 \hfill \\ \end{gathered} }

4. feladat

Oldja meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y''(x) + 3y'(x) + 2y(x) = 1 + e^{ - x} } differenciálegyenletet. (15p)

Megoldás

Először a tekintsük a homogén egyenletet:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'' + 3y' + 2y = 0}

A diffegyenlet karakterisztikus polinomja:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m^{2} + 3m + 2 = 0}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (m+1)(m+2)=0 \rightarrow m_{1}=-1; m_{2}=-2}

Ebböl a homogén egyenlet általános megoldása:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(x)=c_{1}e^{-x}+c_{2}e^{-2x}}

Tekintsük most az inhomogén egyenletet. Mivel a homogén megoldásban és a gerjesztő függvényben is szerepel e^(-x) alakú tag, a megoldást a következő formában kell keresnünk:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(x)=Axe^{-x}+Be^{-x}+Ce^{-2x}+D}

A feladat tehát az A,B,C,D konstansok meghatározása. Fejezzük ki y'-t és y-t:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'=-Axe^{-x}+Ae^{-x}-2Ce^{-2x}}

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y"=Axe^{-x}-2*Ae^{-x}+4Ce^{-2x}}

Helyettesítsünk vissza az inhomogén egyenletbe!

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle [Axe^{-x}-2Ae^{-x}+4Ce^{-2x}]+3[-Axe^{-x}+Ae^{-x}-2*Ce^{-2x}] +2[Axe^{-x}+Be^{-x}+Ce^{-2x}+D]=1+e^{-x}}

összevonva az azonos kitevőjű tagokat:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2D+Ae^{-x} = 1+e^{-x}}

d/dx:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -Ae^{-x}=-e^{-x} \rightarrow A=1}

x=0-t behelyettesítve az előző előtti egyenletbe:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2D=1 \rightarrow D=1/2}

Mivel B és C kiesik ezért B,C bármely valós szám lehet.

Tehát az inhomogén egyenlet általános megoldása:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y(x) = xe^{-x}+c_{1}e^{-x}+c_{2}e^{-2x}+0.5}

5. feladat

A komplex sík mely pontjaiban differenciálható az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(z) = \bar z z^2} függvény ? (15p)

Megoldás
TODO

6. feladat

Oldja meg az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left\{ \begin{gathered} \dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\ \dot x_2 (t) = - 8x_1 (t) + 3x_2 (t) \hfill \\ \end{gathered} \right. } differenciálegyenlet-rendszert az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_1 (0) = 1,x_2 (0) = 0} kezdeti feltételek mellett. (20p)

Megoldás

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left\{ \begin{gathered} \dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\ \dot x_2 (t) = - 8x_1 (t) + 3x_2 (t) \hfill \\ \end{gathered} \right. } Az első egyenletetből Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_2} :

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_2 = x_1 - \dot x_1} , amiből Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \dot x_2 = \dot x_1 - \ddot x_1}

így a második egyenlet kifejezhető Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x_1} -nek és deriváltjainak segítségével.