Analízis (MSc) típusfeladatok

A VIK Wikiből
A lap korábbi változatát látod, amilyen Csala Tamás (vitalap | szerkesztései) 2016. május 25., 01:34-kor történt szerkesztése után volt. (→‎Laplace trafó diff-egyenlet)

Integrál trafók témakör

Laplace trafó diff-egyenlet

1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

Megoldás:

  • Vegyük mindkét egyenlet Laplace trafóját ():

  • Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:

  • Mátrixos alakra hozva:

  • Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):

  • Az inverz laplacehoz bontsuk parciális törtekre:

  • Együtthatókat összehasonlítva:

  • Vagyis
  • Tehát a táblázat alapján

2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

Megoldás:

  • Vegyük mindkét egyenlet Laplace trafóját:

  • Átrendezve és mátrixos alakra hozva:

  • Megoldás X-re:

  • Parc törtek:

  • Ahonnan:

  • Inverz Laplace után:

3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!

Laplace trafó szabályok alkalmazása

1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:

,

ha f Laplace transzformáltja,

Fourier diff-egyenlet

1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!

2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!

Fourier trafó szabályok alkalmazása

1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy

Disztribúciók

1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!

2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:

3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)

4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!

5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!

Wavelet trafók

1) [2015ZH1] Legyen , a mexikói kalap wavelet.

a) Legyen .

b) Legyen . Tudjuk, hogy .

2) [2016ZH1] A Poisson wavelet a következő:

a) Mutassuk meg, hogy , ha

b) Mutassuk meg, hogy

c)

3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!

2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!

Parcdiff egyenletek (véges differenciák)

1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha

2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?

Jordan normál-forma

1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha

Nem lineáris egyenletek numerikus megoldása

1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.

a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?

b) Használható-e a [4, 5] intervallumon az iteráció?

2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?

3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?

Lagrange multiplikátor módszer

1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!

2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)

3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!

Variáció számítás

1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!

2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!