Algoritmuselmélet - PPZH, 2013.05.23.
2013.05.23 - PPZH megoldásai
1. Feladat (Van megoldás)
Tudjuk, hogy az Értelmezés sikertelen (ismeretlen „\textsc” függvény): {\displaystyle f(n), g(n) : \textsc{N} \rightarrow \textsc{N} } függvényekre igaz, hogy és Lehetséges-e, hogy:
(a)
(b)
(Ez két, egymástól függetlenül megválaszolandó kérdés.)
a)
- Ha
- Akkor igaz az, hogy:
- És az is, hogy
- Tehát lehetséges.
b)
- Ha
- Akkor igaz az, hogy:
- És az is, hogy
- Tehát lehetséges.
2. Feladat (Van megoldás)
Távmunkában fogunk dolgozni mostantól n napon át. Nem kell minden nap bejárnunk, de at alábbi három feltételt be kell tartanunk:
- két egymást követő benti munkanap között legfeljebb k nap telhet elm
- az n nap során legfeljebb egyszer maradhatunk pontosan k napig távol,
- az első és a n. napon be kell mennünk.
Sajnos a kék metróval járunk dolgozni, ami hol jár, hol nem, de szerencsére megjósolták nekünk, hogy a kötvetkező n napoban mely napokon lesz üzemzavar, ezeken a napokon nem akarunk dolgozni menni (az első és az utolsó napon nem lesz üzemzavar). Adjon algoritmust, ami a jóslás eredmények ismeretében O(nk) lépésben meghatározza, hogy legkevesebb hány bemenéssel tudjuk megúszni ezt az n munkanapot.
A megoldást először a 2. feltétel figyelembevétele nélkül írom le, anélkül sokkal egyszerűbb.
Vegyünk fel egy n méretű tömböt. Ennek az i-edik eleme legyen az a szám, ahány napot muszáj bent lennünk, ha az i. napon be akarunk menni.
Ha az i. napon üzemzavar van, akkor a tömb i-edik eleme legyen végtelen. Ha nincs üzemzavar, akkor legyen a tömb előző legfeljebb k elemének a minimuma plusz egy (amikor az előző k elemet nézzük, ott k-1 kihagyást engedünk meg).
Pl, ha n = 7, k = 3, és a 2. és az 5. napon lesz üzemzavar:
nap | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
érték | 1 | végtelen | 2 | 2 | 3 | végtelen | 4 |
A második feltétel figyelembevételéhez egy két soros táblázattá kell bővítenünk a tömböt. A második sorába tároljuk azt, hogy hány napot kötelező bent lennünk, ha az i. napon bent vagyunk, és kihasználjuk azt is, hogy egyszer pontosan k napot is lehetünk távol. Ennek az értéke vagy végtelen, vagy a minimuma két lehetőségnek:
- Ha most használtuk fel a k napos lógást, akkor k+1 nappal ezelőtti, első sorbeli elem + 1.
- Ha már korábban felhasználtuk a k napos lógást, akkor az előző k napban nézzük a második sor elemeinek a minimumát + 1.
Pl, ha n = 7, k = 2, és az 5. és a 6. napon lesz üzemzavar:
nap | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
első sor | 1 | 2 | 2 | 3 | végtelen | végtelen | végtelen |
második sor | 1 | 2 | 2 | 2 | végtelen | végtelen | 4 |
3. Feladat
TODO
4. Feladat
TODO
5. Feladat (Van megoldás)
Egy kupac elemeit preorder bejárás szerint kiolvasva az alábbi számsorozatot kapjuk: Rekonstruálható-e ebből a kupac?
- A kupac egy teljes bináris fa, így tudjuk, hogy mi a fa alakja.
- Nincs is más dolgunk, mint felrajzolni, majd a preorder bejárás alapján beírni az elemeket a megfelelő csúcsokba, és ellenőrizni, hogy sérül-e valahol a kupac adatszerkezet egy tulajdonsága.
- Látszik, hogy minden rendben van, így a kupac rekonstruálható.
6. Feladat
TODO
7. Feladat
TODO
8. Feladat
TODO