Matematika A4 - 2003/04 ősz 2. ZH

A VIK Wikiből
A lap korábbi változatát látod, amilyen David14 (vitalap | szerkesztései) 2014. január 26., 01:55-kor történt szerkesztése után volt.


2003/04 ősz 2. ZH

1. Feladat:

Mennyi a felezési ideje és átlagosan mennyi az élettartama annak az örökifjú tulajdonságú radioaktív részecskének, mely az első 2 évben 0.2 valószínűséggel nem bomlik el?

Megoldás

élettartam

Ha örökifjú, akkor exponenciális eloszlás.

2. Feladat:

Az origó középpontú, egy sugarú körív felső felén egyenletes eloszlás szerint választunk egy pontot. Határozza meg a pont első koordinátájának a sűrűségfüggvényét!

Megoldás

3. Feladat:

Két, egymástól független véletlen számot generálunk 0 és 1 között. Mi a valószínűsége annak, hogy az elsőnek a négyzete nagyobb, mint a másodiknak a köbe, ha mindkettőt a) egyenletes b) az f(z)=2z (0<z<1) sűrűségfüggvényű eloszlás szerint választjuk?

Megoldás

a) Kérdés

Kiszámoljuk a sűrűségfüggvényeket, képezzük a direktszorzatot, aztán intergálunk egy jót.

a) Kérdés egyszerűbben

Ez már egyenletes eloszlás, a feladat egyszerűsödik a

vagyis a

görbe alatti terület számítására.

b) Kérdés

2005/06 ősz 2. ZH

1. Feladat:

Két pontot választunk 0 és 1 között egyenletes eloszlás szerint egymástól függetlenül. Ezek 3 szakaszra bontják az intervallumot. Mi a valószínűsége, hogy a szakaszok hosszai balról jobbra növekvő sorozatot alkotnak?

Megoldások

valószínűségi változók egyenletes eloszlást követnek

  • Két eset lehetséges:

  • Az első eset -

Mivel egyenletes eloszlásról van szó, a valószínűség számítható a két egyenes közötti terület kiszámításával (kedvező eset per összes, az összes az egységnyi négyzet, 1-el való osztásnak nincs jelentősége).

  • Második eset -

A szimmetria miatt az első esetben számított terület tengelyre tükrözött képét kapjuk megoldásnak.

Teljes megoldás:

2. Feladat:

Határozza meg egy számítógép által generált, 0 és 1 között egyenletes eloszlású véletlen szám köbgyökének az eloszlás- és sűrűségfüggvényét, és a várható értékét!

Megoldások

  • Várható érték = első momentum


Másik megoldás - Kitaláljuk az eloszlásfüggvényt, majd őt deriválva jutunk a sűrűségfüggvényhez:

3. Feladat:

Tegyük fel, hogy egy országban az embereknek kb. 40 %-a balkezes. 2400 embert véletlenszerűen kiválasztva mi a valószínűsége annak, hogy kiválasztottak között a balkezesek aránya 39% és 41%-a között van? (A standard normális eloszlás eloszlásfüggvénye segítségével adjon képletet a valószínűség közelítő értékére! A képletben az eloszlásfüggvény jelén kívül más betű nem szerepelhet.)

Megoldások

ahány balkezes

Binomiális eloszlás

Moivre-Laplace miatt közelíthető normális eloszlással.