Matematika A3 - Differenciálegyenletek: osztályozások és definíciók

A VIK Wikiből
A lap korábbi változatát látod, amilyen David14 (vitalap | szerkesztései) 2013. február 23., 23:33-kor történt szerkesztése után volt. (David14 átnevezte a(z) Differenciálegyenletek: osztályozások és definíciók lapot a következő névre: Matematika A3 - Differenciálegyenletek: osztályozások és definíciók: Pontos cím)

Ez az oldal a korábbi SCH wikiről lett áthozva.

Ha úgy érzed, hogy bármilyen formázási vagy tartalmi probléma van vele, akkor, kérlek, javíts rajta egy rövid szerkesztéssel!

Ha nem tudod, hogyan indulj el, olvasd el a migrálási útmutatót.


%TOC{depth="3"}%

Definíció

A differenciálegyenlet olyan egyenlet, mely tartalmaz egy ismeretlen függvényt (szokásosan ) és annak deriváltjait.

Osztályozások

Közönséges - parciális differenciálegyenletek

Közönséges, ha az ismeretlen függvény egyváltozós, parciális, ha többváltozós.

Példák

Az első egyenlet közönséges, a második parciális.

Lineáris - nem lineáris differenciálegyenletek

Lineáris, ha nem szerepel az egyenletben a deriváltak szorzata, egyébként nem lineáris.

Példák

Az első egyenlet lineáris, a második nem.

Homogén - inhomogén differneciálegyenletek

Homogén, ha az egyenlet nem tartalmaz független változót vagy konstans tagot, inhomogén, ha igen.

Példák

Az első egyenlet homogén, a második nem.

Állandó-, vagy függvényegyütthatós differenciálegyenletek

Állandó együtthatós, ha a deriváltak együtthatói állandók, függvény együtthatós, ha függvények.

Példák

Az első egyenlet állandó-, a második függvény együtthatós.

Első-, másod-, n-edrendű differenciálegyenletek

A legnagyobb derivált rendje határozza meg az egyenlet rendjét.

Példa

A fentiek mind elsőrendűek, alább egy harmadrendű.


-- Serény György előadásai és Farkas Gergő gyakorlatai alapján írta: MAKond - 2011.01.08.