Laboratórium 2 - 7. Mérés ellenőrző kérdései

A VIK Wikiből


1. Mit jelent az analóg/digitális átalakítás? Milyen bemeneti/kimeneti jelei vannak egy A/D átalakítónak?

Az analóg-digitális átalakító olyan eszköz, amely a bemenetére adott folytonos amplitúdójú, folytonos vagy diszkrét idejű jelet - amely a specifikált teljes kivezérlés tartományba esik - leképezi egy diszkrét amplitúdójú, diszkrét idejű jellé.

Az A/D átalakító ki- és bemenő jelei:

  • Egy analóg bemenetet (szimmetrikus, vagy aszimmetrikus, unipoláris vagy bipoláris), amire az analóg bemeneti jel jut.
  • Egy referencia bemenetet (ami lehet fizikailag külső, vagy már az IC-re integrált), amellyel a bemeneti jelet összehasonlítja (megfelelő skálázás után).
  • Egy digitális vezérlő bemenetet, amellyel az átalakítás paraméterei a külvilág által befolyásolhatóak - átalakítás triggerelése, szóhossz, stb.
  • Egy digitális adatkimenetet, ahol az átalakítás végeredménye a külvilág számára hozzáférhető.

2. Mit jelent a digitális/analóg átalakítás? Milyen bemeneti/kimeneti jelei vannak egy D/A átalakítónak?

A digitális-analóg átalakító a bemeneti digitális szimbólumnak megfelelő analóg kimeneti jelet állítja elő. A kimeneti jel lehet feszültség vagy áram, de legtöbbször az áramkimenetű átalakítók jelét rögtön feszültséggé alakítja egy áram/feszültség-konverter erősítő.

Az D/A átalakító ki- és bemenő jelei:

  • Egy analóg kimenetet (feszültség vagy áram).
  • Egy analóg referencia bemenetet (ami lehet fizikailag külső, vagy már az IC-re integrált), amellyel a kimeneti jelet skálázza.
  • Egy digitális adatbemenetet, ahol az átalakítandó digitális kód megadható.

3. Magyarázza el a szukcesszív-approximációs A/D átalakítás működési elvét [1,2]!

Fájl:Labor2 mérés7 ábra3.jpg

A szukcesszív-approximációs módszer a sorozatos közelítésen alapul. A konvertálandó jelet a komparátor összehasonlítja a DA-átalakító kimenőjelével. Eltérés esetén, az eltérés előjelétől függő irányban, a vezérlő módosítja a regiszter tartalmát, míg a komparátor egyenlőséget nem jelez. Egyensúlyi állapotban a digitális kimeneten megjelenő számérték az analóg bemeneti jelnek felel meg. A legcélszerűbb algoritmus erre a "felezéses" algoritmus. Itt első lépésként az MSB jelenik meg a regiszteren, ha ez túl nagy lefele feleződik az egyel kisebb helyiértékű bittel, ha túl kicsi felfele megy a következő bittel.

4. Magyarázza el a létrahálózatos D/A átalakítás működési elvét [1,2]!

Sokféle D/A átalakító létezik, az egyik kedvelt típus a létrahálózatos D/A-átalakító. A létrahálózat binárisan súlyozott áramokat szállít a kapcsolóegység részére. A kapcsolók a digitális bemenőjeltől függő pozíciójának megfelelően a binárisan súlyozott áramok lineáris kombinációja jut a műveleti erősítő bemenetére. A műveleti erősítő és visszacsatoló ellenállása, mint áram feszültség átalakító az áramösszegből arányos feszültséget képez a kimeneten. Szükség van még Ur referenciafeszültségre.

5. Rajzolja fel a szinuszos jellel történő A/D átalakító vizsgálat mérési elrendezését!

Aki tudja erre a kérdésre a választ, az NE tartsa magában! ;)

6. Mit jelent a koherens mintavételezés? Hogyan biztosítjuk a periódusonként eltérő fázist?

A/D átalakító vizsgálatának elterjedt módja a hisztogramm teszt, amire gyakran szinuszjelet használnak. A hisztogram teszt lényege, hogy egy ismert sűrűségfüggvényű jelet adunk az átalakító bemenetére. A kimeneti kódok hisztogramját előállítva és összevetve az eredeti jel sűrűségfüggvényével, az átalakító statikus karakterisztikája illetve számos egyéb paramétere meghatározható. Ahhoz, hogy a hisztogram ne torzuljon, a jelből egész számú periódust kell mintavételezni. Ez másképpen azt jelenti, hogy a jel frekvenciája (fi) és a mintavételi frekvencia (fs) közötti fent kell állnia az alábbi egyenlőségnek: fi=J*(fs/M), ahol M a vett minták száma, J pedig a mintavett periódusok száma (J és M egész). Ezt nevezzük koherens mintavételezésnek. De ha a periódusok száma osztója a minták számának, akkor minden egyes periódusnál ugyanabban a fázishelyzetben veszünk mintát, ilyenkor a több periódus nem ad több információt, mint egyetlen egy. Így ahhoz, hogy a kvantálási hiba "kellően zajszerű" legyen, J és M relatív prím kell, hogy legyen.

7. Definiálja az SNR, SINAD, THD fogalmát (az idő és/vagy a frekvenciatartományban)!

A SINAD (SIgnal-to-Noise And Distortion ratio, azaz jel-zaj és torzítás viszony) megadja a jelteljesítmény valamint a zaj és harmonikus komponensek teljesítményének arányát:

Időtartományban:

Frekvenciatartományban:



A SNR (signal-to-noise ratio, azaz jel-zaj viszony) az A/D teszteléshez kapcsolódó fogalmak közül a legkevésbé egyértelmű. Egy lehetséges frekvenciatartománybeli definíció:

Kézi számításoknál élhetünk az alábbi közelítéssel, ahol a zaj átlagértéke dB-ben:



A harmonikus tartalom jellemzésére szolgál a THD (total harmonic distortion, azaz teljes harmonikus torzítás ). Értéke az átalakító transzfer karakterisztikájának nemlinearitásaitól függ. A THD-val a felharmonikusok teljesítményét az alapharmonikus teljesítményéhez viszonyítjuk:

8.

9.

10.

11.

12.

13.

14.

15.