„Alkalmazott mesterséges intelligencia” változatai közötti eltérés

A VIK Wikiből
→‎Előadás: Óra anyagának hozzáadása
→‎Előadás: Órák anyagának hozzáadása
66. sor: 66. sor:
* 4. hét: [[Media:MIBprof-VIMIBB01-20230925-4HaziFealadat-BizonytalanTudas.pdf | házi feladat az órára]]: valószínűségi axiómák és állítások, Bayes-tétel (műveletek), együttes valószínűségeloszlás, marginális / feltételes eloszlás, feltételes függetlenség, normalizálás; [[Media:MIBprof-VIMIBB01-20230925-4A-ValoszinusegiHalokKvizNelkul.pdf | óra]]:  
* 4. hét: [[Media:MIBprof-VIMIBB01-20230925-4HaziFealadat-BizonytalanTudas.pdf | házi feladat az órára]]: valószínűségi axiómák és állítások, Bayes-tétel (műveletek), együttes valószínűségeloszlás, marginális / feltételes eloszlás, feltételes függetlenség, normalizálás; [[Media:MIBprof-VIMIBB01-20230925-4A-ValoszinusegiHalokKvizNelkul.pdf | óra]]:  
* 5. hét: ''szünet''
* 5. hét: ''szünet''
* 6. hét: [[Media:.pdf | döntési fák]]: szükséges információmennyiség, részfasúly, maradék és nyereség, túltanulás és elkerülése (korai leállás, pruning); [[Media:.pdf | tanítás]]: típusai ((un)supervised, half supervised, reinforcement learning), perceptron (bátorsági faktor), gradiens alapú tanítás (hiba)
* 6. hét: [[Media:.pdf | döntési fák]]: szükséges információmennyiség, részfasúly, maradék és nyereség, túltanulás és elkerülése (korai leállás, pruning); [[Media:MIBprof-VIMIBB01-20231009-5-6-Neuralis-halokKvizNelkul.pdf | neurális hálók]]: tanítás típusai ((un)supervised, half supervised, reinforcement learning, gradiens alapú és annak hibája), perceptron (bátorsági faktor)
* 7. hét: [[Media:.pdf | neurális hálók]]: szigmoid neuron: hibavisszaterjesztés; MLP: túltanulás és annak elkerülése (dimenzióredukció, konvolúciós rétegek, dropout, augmentáció, LSTM, transzfertanulás); [[Media:.pdf | gyakorlás]] a [[#ZH |ZH]]-ra
* 7. hét: neurális hálók, folytatás: szigmoid neuron: hibavisszaterjesztés; MLP: túltanulás és annak elkerülése (dimenzióredukció, konvolúciós rétegek, dropout, augmentáció, LSTM, transzfertanulás); [[Media:MIBprof-VIMIBB01-20231016-6B-GyakorlasKvizNelkul.pdf | gyakorlás]] a [[#ZH |ZH]]-ra


* [[Media:MIBprof-VIMIBB01-2019Xosz-6-Egyszeru-dontes-tanulasa.pdf | 6. előadás]]
* [[Media:MIBprof-VIMIBB01-2019Xosz-6-Egyszeru-dontes-tanulasa.pdf | 6. előadás]]

A lap 2023. október 16., 17:50-kori változata

Alkalmazott mesterséges intelligencia
Tárgykód
VIMIBB01
Általános infók
Szak
üzemmérnök
Kredit
5
Ajánlott félév
3
Keresztfélév
nincs
Tanszék
MIT
Követelmények
Labor
6 db
KisZH
nincs
NagyZH
1 db
Házi feladat
nincs
Vizsga
írásbeli
Elérhetőségek


A tantárgy fő célkitűzése a mesterséges intelligencia területének rövid, ám igényes, elsősorban alkalmazásra irányuló bemutatása. A bemutatás lépései: az intelligens viselkedés mibenléte, fontossága alkalmazásának célja, a számítási modellekkel való kifejezésének problémaköre, a mesterséges intelligencia alapvető formális és heurisztikus módszereinek bemutatása, alkalmazásának lehetőségei és korlátai a gyakorlati megvalósítás módszerei és problémái.


Követelmények

Előtanulmányi rend

A szorgalmi időszakban

  • Az előadásokon vannak kvízek (általában 3-5 db előadásonként), és négy helyes megoldásért jár egy jutalompont.
  • A laboron megjelenés kötelező. A 6 laborból 4 teljesítése kötelező, de a megajánlott jegyhez mind a 6 labor teljesítése elvárt. A laborok kéthetente vannak és 4 óra hosszúak lesznek. Nem vészesek, minimális programozói tudás szükséges hozzá. Ha valaki a minimumkövetelményeken túl teljesít laborokat, akkor darabonként +5 pont jár értük. Főleg Pythonban, Google Colabolatory használatával kell dolgozni.
  • Mint néhány más tárgynál, itt is meglehet csinálni a laborokat otthon, és csak kivárni, hogy be tudd mutatni.
  • A ZH legalább elégséges szintű (40%) teljesítése. Maximum 30 pontos, de az előadáson szerzett jutalompont beszámítanak, még az elégéses szint eléréséhez is.
  • Megajánlott jegy: van. Mind a 6 labor teljesítése elvárt és még ZH pontszám + plusz pontok >= 26 is egy követelmény.
  • Pótlási lehetőségek:
    • A ZH szorgalmi időszakban egyszer pótolható, pót-pót ZH már nincs.
    • A laborok nem pótolhatóak, de a laborvezetőtől függően lehet késedelmesen beadni (ezzel kapcsolatban érdemes rákérdezni az adott labor laborvezetőjénél).

A vizsgaidőszakban

  • A vizsga 60 pontos.
    • Legalább elégséges (40%) teljesítése szükséges.

Félévvégi jegy

  • Pontszámítás: Viszga(max. 60) + Zh(max. 30) + NemKötelezőLaborok(max. 10) + ElőadásJutalompontok.
  • Ponthatárok:
Pont Jegy
0,0 - 40,0 1
40,0 - 49,0 2
49,5 - 64,0 3
64,5 - 79.5 4
80,0 + 5

Tematika

Előadás

A prezentációk a Moodle-re vannak feltöltve.

  • 1. hét: követelmények, bevezetés
  • 2. hét: neminformált (vak) keresési stratégiák: BFS, Dijkstra (uniform-cost), DFS (DLDFS, IDS), kétirányú; informált (heurisztikus) keresési stratégiák: optimista, greedy, A*
  • 3. hét: logikai következtetésen alapuló szabályalapú rendszerek: szintaxis, általános következtetési szabályok (igazságtáblázat, előrefele és hátrafele következtetés), működési ciklus, intelligens logikai ágens, ...
  • 4. hét: házi feladat az órára: valószínűségi axiómák és állítások, Bayes-tétel (műveletek), együttes valószínűségeloszlás, marginális / feltételes eloszlás, feltételes függetlenség, normalizálás; óra:
  • 5. hét: szünet
  • 6. hét: döntési fák: szükséges információmennyiség, részfasúly, maradék és nyereség, túltanulás és elkerülése (korai leállás, pruning); neurális hálók: tanítás típusai ((un)supervised, half supervised, reinforcement learning, gradiens alapú és annak hibája), perceptron (bátorsági faktor)
  • 7. hét: neurális hálók, folytatás: szigmoid neuron: hibavisszaterjesztés; MLP: túltanulás és annak elkerülése (dimenzióredukció, konvolúciós rétegek, dropout, augmentáció, LSTM, transzfertanulás); gyakorlás a ZH-ra

Labor

A linkek a Teams-re vannak feltöltve.

  • 1. hét: elmaradt
  • 2. hét: útkeresések a 11. kerület térképén: BFS, DFS, Dijkstra (uniform-cost search), greedy, A*
  • 3. hét: szünet
  • 4. hét: autós fáradtságérzékelő rendszer: valószínűségi változók egy Bayes-hálóban, döntési háló (mintából tanulás)
  • 5. hét: szünet
  • 2. labor - Logika: egyedibb labor, ahol virtuális gépen kell dolgozni CLIPS-ben
    • A mellékelt segédanyagokat nem kell tudni, de a "labor bevezetőt" érdemes megnézni, mert egyébként nem valószínű, hogy a labor végéig befejezi az ember.
  • 5. labor - Neurális hálók: Google Colab jegyzőkönyves labor
  • 6. labor - Natural Language Processing: hagyományos (Word) jegyzőkönyves labor
    • Minimális munkát igényel a labor alkalma előtt, de valójában a "legegyszerűbb" labor.

Segédanyagok

ZH

PZH

Vizsga


1. félév
2. félév
3. félév
4. félév
5. félév
6. félév