„Matematika A1a - Analízis” változatai közötti eltérés
Nincs szerkesztési összefoglaló |
|||
18. sor: | 18. sor: | ||
A [[Matematika A1a - Analízis]] tárgy a minden mérnök számára elsajátítandó, a szakmához elengedhetetlen matematikai ismeretek átadására törekszik. A képzés során gyakorlatilag minden tárgy hivatkozik valamilyen szinten az itt tanultakra, így nagyon fontos, hogy ennek a tantárgynak az anyaga készségszinten menjen. A tárgyra közvetlenül épít a [[Matematika A2a - Vektorfüggvények]], a [[Jelek és rendszerek 1]] és a [[Fizika 2]]. Mivel a tananyag nagyobb részét az emelt szintű matematika érettségi követelménye tartalmazza, sokak számára ez a tárgy inkább az ismeretek rendszerezését, átismétlését és elmélyítését jelenti. Vannak azonban olyan első éves hallgatók, akik nem vagy csak korlátozott mértékben foglalkoztak az emelt szintű középiskolai tananyaggal. Tőlük ez a tárgy elmélyült munkát és rengeteg gyakorlást kíván. | A [[Matematika A1a - Analízis]] tárgy a minden mérnök számára elsajátítandó, a szakmához elengedhetetlen matematikai ismeretek átadására törekszik. A képzés során gyakorlatilag minden tárgy hivatkozik valamilyen szinten az itt tanultakra, így nagyon fontos, hogy ennek a tantárgynak az anyaga készségszinten menjen. A tárgyra közvetlenül épít a [[Matematika A2a - Vektorfüggvények]], a [[Jelek és rendszerek 1]] és a [[Fizika 2]]. Mivel a tananyag nagyobb részét az emelt szintű matematika érettségi követelménye tartalmazza, sokak számára ez a tárgy inkább az ismeretek rendszerezését, átismétlését és elmélyítését jelenti. Vannak azonban olyan első éves hallgatók, akik nem vagy csak korlátozott mértékben foglalkoztak az emelt szintű középiskolai tananyaggal. Tőlük ez a tárgy elmélyült munkát és rengeteg gyakorlást kíván. | ||
==Követelmények== | ==Követelmények== | ||
42. sor: | 43. sor: | ||
* [http://www.tankonyvtar.hu/hu/tartalom/tamop425/2011-0001-526_thomas_kalkulus_2/adatok.html Thomas-féle Kalkulus 2] '''az utolsó fejezet kivételével a teljes Kalkulus 2 (egyváltozós integrálás, primitív függvény, elemi függvények deriválása, inverze)''' | * [http://www.tankonyvtar.hu/hu/tartalom/tamop425/2011-0001-526_thomas_kalkulus_2/adatok.html Thomas-féle Kalkulus 2] '''az utolsó fejezet kivételével a teljes Kalkulus 2 (egyváltozós integrálás, primitív függvény, elemi függvények deriválása, inverze)''' | ||
* [http://www.tankonyvtar.hu/hu/tartalom/tamop425/2011-0001-526_thomas_kalkulus_3/adatok.html Thomas-féle Kalkulus 3] '''11. fejezet (sorozat határértéke, numerikus sorok)''' | * [http://www.tankonyvtar.hu/hu/tartalom/tamop425/2011-0001-526_thomas_kalkulus_3/adatok.html Thomas-féle Kalkulus 3] '''11. fejezet (sorozat határértéke, numerikus sorok)''' | ||
231. sor: | 231. sor: | ||
*Az MIT single variable calculus előadásai, jegyzetei egyéb anyagai: http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/ <br /> | *Az MIT single variable calculus előadásai, jegyzetei egyéb anyagai: http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/ <br /> | ||
*Az http://ocw.mit.edu -n is érdemes szétnézelődni, nagyon sok hasznos, ingyenes és minőségi tartalom érhető el. | *Az http://ocw.mit.edu -n is érdemes szétnézelődni, nagyon sok hasznos, ingyenes és minőségi tartalom érhető el. | ||
{{Lábléc_-_Villamosmérnök_alapszak 2014}} | {{Lábléc_-_Villamosmérnök_alapszak 2014}} | ||
{{Lábléc_-_Villamosmérnök_alapszak}} | {{Lábléc_-_Villamosmérnök_alapszak}} |